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Introduction

In the history of applied physics, there are numerous discoveries and experiments
that have been fundamental in shaping today’s picture of physical world and serving
as tools for the continuous verification of physical theories. One of the best verified
(classical) theories is the General Theory of Relativity. It interprets the phenomenon
of gravitation as a geometrical property of space and time. This theory has allowed
us to gain a deeper understanding of the interaction between matter and space-time
and, to that extent, explains many phenomena caused by the nature of gravity. As
it will turn out in the following section, there have been many efforts in the last
decades to carry out numerous tests of this theory, by which it always turned out
that any predictions could be successfully proved by observations. Among the most
impressive and vivid evidences are probably the detection of gravitational waves [1]
in September 2015 and the first direct observation of the super-massive black hole
in the galaxy M87 with the help of the Event Horizon Telescope in April 2017 [5],
and the recently published (May 2022 [4]) results from direct observations of the
shadow of the super-massive black hole Sagittarius A* at the center of our Milky
Way galaxy in 2017.

Apart from the above-mentioned modern tests, there are three classical tests of
General Relativity, which were already proposed by Albert Einstein [6]. Among
these are (1) the perihelion precession of Mercury, (2) the deflection of light by
the Sun, and (3) the gravitational redshift of light. As an additional test, the radar
echo delay was added later (4), which was first predicted by Irwin I. Shapiro in 1964
[101] and successfully tested a few years later ([103], [102]). This effect is called after
its discoverer and is therefore called Shapiro time delay. This work documents the
results of a revisitation of one of these classical tests, specifically that of the gravita-
tional redshift, which can be derived as a consequence of the equivalence principle,
one of the fundamental principles of General Relativity. The opportunity has been
given by the fortunate circumstance that the two GALILEO satellites FM01 and
FM02 have been guided to elliptical orbits by a technical malfunction instead of
being placed on circular orbits, as is usual for navigation satellites. Since then, the
satellites rise and fall to their apogee and perigee positions in Earth’s gravitational
field twice a day. As a consequence of the Equivalence Principle, the frequencies of
the high-precision atomic clocks that are part of the satellites’ payload are thereby
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subjected to a corresponding modulation. These two ”satellite laboratories” thus
provide an ideal experimental setting for a redshift test, the last precision measure-
ment (Gravity Probe A) of which now dates back several decades.

In addition to the analysis and evaluation of the clock data of both satellites, the
modeling of systematic effects plays a major role in the preliminary stage of the
data analysis. As for systematic effects superimposed on satellite observation data
used to estimate the clock data, these occur from various error sources, which can
be divided into two categories: signal propagation effects and orbital perturbations.
Of particular importance are those effects that have approximately the same signa-
ture or harmonic resonance as the redshift modulation. To investigate the latter in
more detail, we present a novel finite element solar radiation pressure model for the
Galileo satellites that accurately addresses the systematic orbit perturbations and
discuss the model performance based on a parameter estimation framework using
an obit determination procedure. We also discuss the modeling of measurement
limitations potentially imposed upon the atomic clocks by magnetic and thermal
perturbations. The focus is on estimating upper and lower bounds for a reasonable
limitation of the measurement uncertainty given by these factors.

2



CHAPTER 1

Basics of General Relativity

1.1 Equivalence Principle

The Equivalence Principle is an elementary prerequisite which substantially pro-
moted the development of the theory of General Relativity. By the this principle,
the effect of gravity should be represented as a curvature of space-time, and this
idea led Einstein to the development and eventual publication of his field equations
in 1915 [36]. We briefly review the implications of the Equivalence Principle, as
well as the consequences that can be drawn from it, which have been verified over
the years by numerous experimental tests. The Equivalence Principle encapsulates
three different aspects:

� The Universality of Free Fall (UFF)

� The Local Position Invariance (LPI)

� The Local Lorentz Invariance (LLI)

The Weak Equivalence Principle (WEP) states that two test masses fall at the
same rate regardless of their composition. This principle is also referred to as the
UFF. Classical experiments to proof the UFF are Eötvös experiments: If one mea-
sures the relative acceleration of two different test masses A and B in a free-fall
experiment, a possible difference in their drop rates can be interpreted as a viola-
tion of the WEP and is conventionally measured with the Eötvös parameter:

ηE =
(mi/mg)a − (mi/mg)b
(mi/mg)a + (mi/mg)b

(1.1)

where mg and mi are the gravitational and inertial masses of the free-falling objects.
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One of the most recent tests of the WEP have been performed by the Micro-
Satellite à trâınée Compensée pour l’Observation du Principe d’Equivalence (MI-
CROSCOPE) satellite mission. This was to achieve an accuracy of 10−15, and from
an initial data analysis conducted by Touboul et al. [118] one obtained results of
the order of the experiment’s objective sensitivity. This outperforms the result of
the most precise torsional balance experiment to date, carried out by Wagner et
al. [124] in 2012, which achieved an accuracy of 10−13. The future mission STEP
(Satellite Test of the Equivalence Principle) ([66], [66], [110]) is planned to a have
a very similar mission and payload design as the MICROSCOPE experiment and
promises a precision level of 10−18.

As a consequence of the WEP, which mainly articulates the observation that differ-
ent test masses fall at the same rate in free-fall experiments, in 1907 Einstein came
to the pioneering conclusion that it is generally impossible to distinguish whether
the outcome of an experiment is affected by the presence of a homogeneous gravita-
tional field or a homogeneous acceleration. Einstein thoroughly presents the Strong
Equivalence Principle (SEP) in [35]. In his article, he first emphasizes the WEP, the
equivalence of inertial and gravitational mass, and points out that the importance of
this concept has far-reaching consequences: The physical equivalence with respect
to any experiment of two different observer reference frames, one that rests in a
homogeneous gravitational field and one that is homogeneously accelerated while
unaffected by a gravitational field. In his publication, as a direct consequence of
the SEP he used his findings to derive the redshift of light exchanged between two
observers separated by a certain vertical distance, which is to be expected in a grav-
itational field. As a precious result, it shall be pointed out that with the help of
the SEP alone, one is thus able to describe effects due to gravity, simply by us-
ing an accelerated reference frame. In literature terminologically the term Einstein
Equivalence Principle (EEP) is used instead of SEP. Historically, this is owed to a
variation of the SEP, in which experiments with non-gravitational interaction are
considered. To remain compliant with the literature, we use the term EEP in this
context.
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Test of General Relativity with GALILEO Satellites

Figure 1.1: Overview of LPI experiments
by C. Will [126], [12] to determine the
violation factor α, which is the deviation
from the predicted redshift to be measured
between two different clocks in a gravita-
tional field according to the given formula.

A redshift test is a famous experi-
ment to proof the LPI, which states that
the outcome of any non-gravitational
experiment is independent of space and
time. Following Einstein’s original con-
siderations, the EEP implies that one
measures a frequency shift between two
different clocks, which are installed at
fixed positions in a gravitational field
(of the Earth) and have a fixed height
distance to each other. In appeal to
the LPI, if one compares the readings
of these clocks in their respective lo-
cal Lorentz frame, regardless of the po-
sition in space-time, one should come
to the conclusion that their frequencies
are equal. Thus, an important conclu-
sion is that the measured redshift should
not depend on the location of the ex-
periment where the measurement takes
place, just as the result of the measure-
ment should not depend on the physi-
cal structure or the operation principle
of the clock used. This is also known
as the Universality of Gravitational Red-
shift. A deviation from the predicted redshift is considered a violation of the LPI
and thus the EEP. The article of C. Will [126], represents a concise compendium
on ”The Confrontation between General Relativity and Experiment” and we repro-
duce with figure 1.1 his representation of all the experiments performed until the
year 2014 to verify the LPI.

In 1959, Pound and Rebka [84] made use of the Mössbauer effect to demonstrate
the frequency shift of sharp γ spectral lines due to the Earth’s gravitational field
over a vertical path of 22.5 meters in the tower of the Jefferson Physical Laboratory.
The results of an improved version of this experiment was published in 1965 by
Pound and Snider [85]. The most accurate experiment to date was Gravity Probe
A (GP-A) conducted by Vessot and Levine ([122], [120], [121]) using a atomic Hy-
drogen Maser on a sounding rocket that was launched to an altitude of 10000km.
During the nearly two-hour flight, the atomic clock’s rate was continuously com-
pared to an identical on-ground atomic clock. During the experiment, a two-way
microwave link was established, both to eliminate the first-order Doppler effect by
exploiting the signal echo, and to directly measure the frequency shift between the
atomic clock on the rocket with that of the Hydrogen Maser on the ground. The
confirmation of the LPI was at an accuracy level of 1.4× 10−4. The ACES (Atomic
Clock Ensemble in Space) experiment is a planned experimental laboratory to be
installed on the International Space Station (ISS). ACES is designed to test a new
generation of atomic clocks (PHARAO (Projet d’horloge atomique par refroidisse-
ment d’atomes en orbite) Hydrogen Masers) under microgravity conditions. On the

Chapter 1 5



Test of General Relativity with GALILEO Satellites

one hand, researchers hope that the mission with its payload will contribute to the
further development of a more precise, global time determination standard, and on
the other hand the mission will be used to enable the evaluation of general rela-
tivity at an unprecedented level ([22], [67]). With this experiment it is expected
to measure the redshift with an accuracy of 3 × 10−6. Finally, the mission project
STE-QUEST ([2], [7]) (Space-Time Explorer and Quantum Equivalence Principle
Space Test) within the scientific space program Cosmic Vision of the European
Space Agency (ESA) shall be mentioned, whose launch date was postponed to the
year 2024. In contrast to other experimental proponents, it is intended to investigate
two aspects of the General Theory of Relativity. On the one hand, it is planned
to measure the relative acceleration of free-falling atoms by means of atom interfer-
ometry in order to confirm the WEP with an accuracy three orders of magnitude
higher than MICROSCOPE. Second, the time dilation or gravitational redshift will
be measured using the same atomic clock system used in the ACES experiment.
To maximize this effect, an orbital eccentricity of ≈ 0.78 is targeted. Compared to
ACES, an increase in accuracy by a factor of 45 to 400 is to be expected.

General Relativity has been unyieldingly tested, and no evidence of violations of
its underlying principles have yet been found. On the way to a quantum mechanical
description of gravity, in order to get closer to a possible unification of the funda-
mental forces governing physics, one is looking for alternative ways of description
in order to overcome weaknesses of existing theories. One representative alternative
theory is the Standard Model Extension (SME) ([24], [25]), which offers a framework
for the evaluation and interpretation of potential EEP violations originating from
Lorentz and CPT symmetry breaking. As far as a test of the EEP is concerned,
certain coupling parameters can be derived from this theory for different particle
species or bodies of different composition, respectively, that potentially indicate a
violation of the LPI. ChengGang et al. [86] propose a combined WEP and LPI
test to derive bounds to the violation coefficients predicted by the SME. The Earth
E with a distributed ensemble of identical Strontium optical lattice clocks Sr in
free-fall around the Sun was considered as the experimental environment. The an-
alyzed violation signal βE − ξSr refers to a non-vanishing redshift in the Earth’s
co-moving reference frame and was inferred from fractional frequency comparisons
between these clocks, where βE comes as a WEP and ξSr as a LPI violation factor.
In combination with the results from preceding precision tests1, it was shown that
SME parameter predictions can be indirectly constrained to 0.3± 0.9× 10−4 in the
best case.

By reference to this study, a series of tests ([50], [117], [77], [11]) could define
lower bounds for LPI-specific violation parameters using experiments with non-
gravitational interactions to assess the validity framework of the EEP and thus
limit the scope for alternative theories. As a notable reference, a study by N.
Ashby et al. in [11] shows that the LPI violation can be constrained at least by
|αCs − αH | = 2.2 ± 2.5 × 10−7. This result was obtained from long-term measure-
ments of the fractional frequency differences of Earth-bound Cesium fountains and
Hydrogen Masers under the influence of the Sun’s gravitational field.

1Such as this study on the redshift test with the GALILEO satellites.
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1.1.1 General relativistic redshift modeling

Following [69] on p. 64, the frequency ω of a photon with four-momentum vector
kν measured by an observer with four-velocity uν can be written as:

ω = −kνuν (1.2)

where we adopt the index notation from the literature. Comparing the frequencies
perceived by two observers, the measured frequency ratio can be defined as:

1 + z =
ω

ω̂
(1.3)

which is a measure of redshift, whereby ω and ω̂ denote the different frequencies
measured by each of the observers. A universal redshift formula for standard clocks2

in General Relativity is described in [58] and states:

1 + z =
gµν

dλ(s)µ

ds
dγν

dτ

gρσ
dλ(s)ρ

ds
dγ̂σ

dτ̂

(1.4)

where λ is a lightlike geodesic depending on an affine parameter s that connects the
world-lines γ(τ) and γ̂(τ̂) of the two observers each measuring proper time τ and
τ̂ , respectively. The integral curves of the observers give rise to a set of four-vector
fields u and û describing their actual motion. Depending on the state of motion,
the vector fields must be also evaluated with special consideration of the underly-
ing space-time metric gµν . Furthermore, the way of realization of signal exchange
through λ(s) must be known.

On account that the gravitational redshift phenomenon is central to this work, we
would like to derive here the redshift for a typical special case of two observers at
rest, inspired by the experiment of Pound and Rebka in no small part. We assume
that there is a timelike Killing vector field ξν proportional to the four-velocity uν

of a stationary observer, which specifies the direction in which an underlying space-
time metric is preserved. As such, uν can be identified by ξν using a normalization
condition as follows:

uν =
ξν√
−ξνξν

(1.5)

Killing vectors give rise to a conserved quantity as long as geodesic motion is con-
cerned. This implies a constant of motion p0 along a photon’s null geodesic, which
can be derived from the projection of a Killing vector ξν onto a tangent vector kν
to the photon’s null geodesic:

p0 = −kνξν (1.6)

Substituting 1.5 into 1.2 yields the frequency measured by the observer:

2A characterization of standard clock is presented by V. Perlick in [78]
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ω =
kνξ

ν

√
−ξνξν

(1.7)

Considering two stationary observers O and Ô at different locations with their four-
velocities, applying equation 1.3 yields:

1 + z =
ω

ω̂
=

√
−ξ̂ν ξ̂ν |Ô
−ξνξν |O

(1.8)

We would like to put the result in concrete terms by using an explicit form of a
space-time metric. Following [18] page 85 ff, the Schwarzschild metric considers a
static, spherically symmetric gravitational field and may be defined as:

ds2 = g00(r)dt2 + grrdr
2 + r2dΩ2 (1.9)

where we identify t as a time coordinate and r as a radial coordinate. In resemblance
of the metric of a sphere, r2dΩ2 can be interpreted as the metric of surfaces with
constant t and r. Performing a frequency comparison between the two stationary
observers O and Ô resting at different positions r and r̂, following 1.8, we obtain
the expression:

1 + z =
ω

ω̂
=

√
g00(r̂)

g00(r)
=

√
1− rs/r̂

1− rs/r
≈ 1− 1

2
rs

(
1

r̂
− 1

r

)
(1.10)

where rs = 2GM represents the Schwarzschild radius, G denotes the gravitational
constant, and M being the mass of the body constituting the source of the gravi-
tational field. For a somewhat more detailed discussion of frequency comparisons
in Schwarzschild space-time, considering various special cases of observer scenarios,
we refer the reader to [81].

Let τ be the proper time of a clock on a satellite orbiting the Earth and t a fixed
coordinate time, then according to N. Ashby [10] a certain time interval

∫
dt can be

calculated by integrating τ along the satellite’s orbit:∫
dt =

∫
dτ

[
1− ∆U⊕

c2
+

v2

2c2

]
(1.11)

In formula 1.11, ∆U⊕ is the potential difference in Earth’s gravitational field be-
tween two positions at different altitudes, v is the velocity of the orbiting satellite
and τ represents the proper time as counted by the satellite’s clock.

Coordinate time can be interpreted as the reading of a clock in a local inertial
coordinate system. In the above formula, the coordinate time t is related to the
proper time τ of the satellite clock, in the sense that this equation describes how
to maintain time synchronization between two different observers. In order to bring
the readings of the clocks of these observers into agreement, one requires additional
information about their relative position and motion. Hence, one has to derive
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the correct coordinate transformation, which relates the time measurements to each
other. Under simplifying conditions, one obtains the integrand on the rhs defined
above, which contains the mathematical traces of this transformation covering the
relative position and motion. Term 1.11 contains two contributions with opposite
signs. According to that formula, a clock at a higher potential, more distant from
Earth would beat faster than a clock at a lower potential in the direct vicinity of
the planet. That means that time has to be down-corrected for clocks on satellites
flying at higher altitudes to be able to synchronize them with clocks at lower alti-
tudes. The third term of the integral in the above formula features the 2nd order
Doppler shift which is due to the velocity of the spacecraft. An example of a coor-
dinate time is the GPS system time, serving as a synchronization reference between
the GPS satellite clocks and the ground-based reference clocks. For the purpose
of synchronization, the appropriate relativistic corrections from the equation 1.11
can be applied. Here, the reference clocks are regarded as ideal, standard clocks at
rest, located on the Earth’s geoid. The corresponding potential associated with the
geoids level surface is proposed in [10].

Φ0 = −GM⊕

a⊕
− GM⊕J2⊕

2a⊕
− ω⊕

2a⊕
2

2
(1.12)

where the first term covers the contribution of the Earth’s point-mass potential, the
second term implies the quadrupole moment factor due to the Earth’s oblateness
and the third term accounts for the Earth’s spin. For synchronization of a clock on
a satellite in the Earth’s potential U and a reference clock on the rotating geoid with
the potential assumed in 1.12, one must replace ∆U by V − Φ0 in 1.11. Note that
the time transformation 1.11 is presumed to hold in a space time domain which en-
compasses both the clock on the rotating geoid as well the satellite orbiting around
Earth. For the value of the geoid’s equipotential a value of Φ0 = 6.969290134×10−10

is taken from the numerical standards in [80].

We now look for an expression of the total relativistic time dilation based on
equation 1.11. Substituting ∆U = V − Φ0 into this equation, where U is sought to
be the point-mass potential of the Earth one yields:∫

dt =

∫
dτ

[
1−

(
GM⊕

rc2
− Φ0

c2

)
+

v2

2c2

]
(1.13)

Under the assumption of energy and angular momentum conservation, one finds the
vis-viva equation for the specific energy of a body orbiting around a central mass:

− GM⊕

r
+

v2

2
= −GM⊕

2a
(1.14)

Equation 1.14 holds for orbiting objects whose mass is negligible in comparison the
mass of their central body. Thereby, the Earth is assumed to generate the point-
mass potential U = GM⊕

r
. Inserting equation 1.14 into 1.13 by substituting the

kinetic energy term, one obtains:∫
dt =

∫
dτ

[
1 +

Φ0

c2
+

3GM⊕

2ac2
+

2GM⊕

c2

(
1

r
− 1

a

)]
(1.15)

Chapter 1 9



Test of General Relativity with GALILEO Satellites

The first three terms of the integrand in formula 1.15 give a constant contribution
to the redshift, whereas the last term varies with the distance to the Earth’s center
and can be understood as a redshift modulation depending on the elongation of the
elliptic orbit. To compute the integral of the last term, one can first substitute the
relation between the radius and the eccentric anomaly r = a (1− e cos(E(τ)) for
r. Furthermore, making use of the differential dependency between the eccentric
anomaly E and the time τ :

dE

dτ
=

√
GM⊕
a3

(1− ecos(E(τ)))
(1.16)

one finally receives:

2GM⊕

c2

∫
dτ

[
1

r
− 1

a

]
=

2GM⊕

c2

∫
dτ

[
ecos(E(τ))

a (1− ecos(E(τ)))

]
(1.17)

=
2
√
GM⊕ae

c2

∫
[cosE(τ)] dτ (1.18)

∆trel = 2

√
GM⊕a

c2
e sin(E(τ)) (1.19)

An alternate expression is given by:

∆trel = 2
rv

c2
(1.20)

where r and v stand for the position and velocity vectors of the satellite in an Earth-
Centered Intertial (ECI) system. This last term 1.20 can be derived by equating the
expressions for the mean anomaly M = E(t)− e sinE(t) and M0 + n (t− t0) where
M0 declares the mean anomaly at some reference epoch t0 = 0 and n is the mean

angular motion n =
√

GM⊕
a3

which directly follows from Keplers third law:

E(t)− e sin(E(t)) = M0 +

√
GM⊕

a3
(t− t0) (1.21)

Ė(t) (1− e cos(E(t)) =

√
GM⊕

a3
(1.22)

Equation 1.22 arises from differentiating formula 1.21 with respect to time which
is exactly the same result as equation 1.16. Taking the first time derivative of the
orbital radius that depends on the eccentric anomaly E results in

r = a (1− e cos(E(t)) (1.23)

ṙ = ea sin(E(t))Ė(t) (1.24)

Inserting (1.24) in (1.22) gives:
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ṙ (1− e cos(E(t)) =

√
GM⊕

a3
ea sin(E(t)) (1.25)

Multiplying equation (1.25) by a and rewriting it with the help of formula (1.21)
finally leads to the expression:

ṙ r =
√

GM⊕a e sin(E(t)) (1.26)

⇔ 2
rv

c2
= 2

√
GM⊕a

c2
e sin(E(t)) (1.27)

which directly leads to equation 1.19 / 1.20. If the eccentricity or the radial orbital
velocity vanishes, i.e. r is perpendicular to v, both expression 1.19 and 1.20 become
zero.
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CHAPTER 2

Experimental stetup

2.1 GALILEO-FOC satellite constellation

The European Global Navigation Satellite System (GALILEO) satellite system
is an initiative launched by the European Union (EU) and its realization is un-
der the operational leadership of the European Union Agency for the Space Pro-
gramme (EUSPA)1 together with the ESA as design authority and prime contrac-
tor. The GALILEO Full Orbit Capability (FOC) satellite constellation comprises
twenty-seven plus three spare satellites arranged in a Walker Delta Pattern, which is
parametrized by (27/3/1), where the spare satellites are not included. This means
that the satellites occupy three different and equally spaced orbital planes, which are
each inclined by 56◦ with respect to the Earth’s equator. In addition, the nine satel-
lites from each of the three groups are evenly distributed on their destination orbit,
resulting in a phase constant of 40◦. An artificial representation of the complete con-
stellation is shown in 2.2. The first two GALILEO satellites FM02 (GSAT0202) and
FM01 (GSAT0201) of the FOC generation, which are the focus of this work, were
mounted on a Fregat MT upper stage of a Soyuz ST-B rocket 2.1. These satellites
are currently operational, but temporarily unusable. A new type of dispenser was
then designed to be capable of carrying four satellites at once. Thereby, the Ariane
5 ES Heavy-Lift Launch Vehicle (HLV) was used to bring the satellites into their
target orbits and the first launch of a quadruple of satellites was finally carried out
on November, 17th 2016. As the life cycle of the first GALILEO satellites will end
in the near future, the launch of the second generation of GALILEO satellites has
recently been planned for 2024. The system concept and first batch of twelve second
generation satellites will be manufactured in a collaboration between Thales Alenia
Space and Airbus Defence & Space. According to announcements by ESA2, the new
satellite system will have an electric propulsion system, which could provide lifetime
maneuverability. Furthermore it will be equipped with a more effective navigation
antenna and an improved navigation timing system. To cope with the technical

1The EUSPA supports the European Union by taking care of the public interests related to the
European Global Navigation Satellite System (GNSS) programs.

2https://www.esa.int/esearch?q=second+generation
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requirements and the specific power budget needed for operations, the satellite bus
system must be scaled accordingly. Therefore, the satellites will also be larger than
their predecessors.

(a) (b)

Figure 2.1: Left, two GALILEO satellites attached to the dispenser unit mounted
onto the Soyuz ST-B/Fregat-MT upper stage, which was destined to carry the satel-
lites (E18 and E14) to their circular Medium Earth Orbit (MEO) orbit. The right
picture shows the satellite arrangement (E21, E25, E27, E31) on the upper stage of
the Ariane 5 ES. The first time, a quartet of GALILEO satellites was launched by
the Ariane 5 ES rocket was on November, 17, 2016.
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Figure 2.2: Complete GALILEO constellation along its three orbital planes. The pic-
ture was taken from the ESA homepage: https://www.esa.int/ESA_Multimedia/
Images/2014/07/Galileo_constellation.

2.1.1 GALILEO FM01 and FM02 mission details

On August, 22nd 2014, the first two GALILEO satellites of the FOC generation
were launched into their orbit. Instead of reaching their planned destination, an
orbit injection failure lead to a significantly lower orbit characterized by a high ec-
centricity (0.23 instead of 0.0002 for a nearly circular orbit) and a lower inclination
(49.7◦ instead of 55◦). Table 4.2 shows the current orbital elements of the satellites
GSAT0202 and GSAT0201. Preliminary investigations revealed that an anomaly in
the Fregat upper stage3 resulted in an incorrect thrust maneuver at the apogee injec-
tion point where the engines were ignited. Cause for the wrong thrust vector settings
was a frozen hydrazine line, which was connected to a cryogenic helium feed line
via the same support structure due to an assembly error4. However, this assembly
error was not caused during hardware integration, but originated from deficiencies
in the thermal design of the upper stage. In an attempt of mission recovery5, ESA
initiated eleven orbit correction maneuvers within seventeen days, which made it
possible to raise the perigee of GSAT0201 by approximately 3500km to 17235km to
reach a more circular orbit with an eccentricity of 0.162. This is equivalent to a revo-
lution period of about thirteen hours. In this orbit configuration, GSAT0201 passes
the same point on Earth once in twenty days, which is twice the time of the nom-
inal configuration and still suffices to synchronize the satellite’s flight pattern with
that of the full constellation to conduct nominal navigation operations6. Finally,
on November 29, 2014, the satellite’s navigation payload was successfully activated

3https://www.esa.int/ESA_Multimedia/Images/2003/04/Fregat_upper_stage_diagram
4Arianespace press release: ”Soyuz Flight VS09: Independent Inquiry Board announces defini-

tive conclusions concerning the Fregat upper stage anomaly”, October, 8th, 2014.
5Inside GNSS press release: ”Galileo 5 and 6 Eccentric Satellites: Mission Recovery and Ex-

ploitation Part I”, August, 15th, 2018.
6https://www.esa.int/Applications/Navigation/Galileo_satellite_set_for_new_

orbit
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and the first signals were received. A similar recovery campaign was launched for
GSAT0202, followed by a first payload activation on March, 15th, 2015, after four-
teen orbit correction maneuvers had been performed. These maneuvers used up
almost all the fuel, rendering further thrust maneuvers impossible. The suborbital
tracks of the satellite’s trajectories recorded in late November 2015 are depicted in
figure 2.3. On November, 30th, 2020, the use of the satellite signals from GSAT0202
and GSAT0201 was officially released for navigation purposes and correspondingly,
the signal health status bit in the navigation data was changed from Signal Com-
ponent currently in Test to Signal OK as explained in [119], so that all compatible
receivers could automatically process the navigation signal. The European Com-
mission published an official service notice7 stating that the satellites can be used
to experience a better navigation performance. However, after it became apparent
during an user evaluation phase that some commercial receivers were having techni-
cal difficulties evaluating the signals from these satellites due to their different orbit
dynamics. As a consequence, it was announced by the European Commission8 on
February, 16th, 2021 that the satellites had been temporarily removed again from
the orbit constellation, while a solution is being investigated in the meantime. Since
then, the signals from the satellites are no longer accessible to commercial receivers
due to the health status bit removed again.

7https://www.gsc-europa.eu/sites/default/files/sites/all/files/

Galileo-service-notice-04-v1.0.pdf
8https://www.gsc-europa.eu/sites/default/files/sites/all/files/

Galileo-service-notice-05-v1.0.pdf
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Figure 2.3: Comparison of ground tracks of GALILEO satellites E14 (blue) and E18
(red) recorded on November, 30th, 2015.

2.2 GALILEO services and signals

GNSS observables are provided in a special exchange format. The International
GNSS Service (IGS) consortium established a working group, which manages main-
taining, archiving and distributing GNSS raw data and and provides these to the
GNSS community in the form of Receiver INdependent EXchange (RINEX) files.
Among the fundamental observables are pseudo-range, phase and Doppler measure-
ments, which are generated through acquisition and tracking of a variety of se-
lected signals distributed among different navigation satellite systems as the Global
Positioning System - NAVSTAR Global Positioning System (GPS), GALILEO,
BeiDou (BeiDou), the Indian Regional Navigation Satellite System (IRNSS), the
Russian Global Navigation Satellite System (GLONASS) or others including satel-
lite based navigation augmentation systems. These observations are made available
in the form of specific (mixed) RINEX observation data files by IGS data centers.
According to the official interface control document [119], the GALILEO satellites
continuously transmit three different signals on four different frequency bands. The
signals are listed in table 2.1. Furthermore, the E5 signal is split into the E5a
and E5b channels. These signals encode four different types of navigation message
streams, which are partly publicly or commercially available on different signal chan-
nels. IGS data centers record and arrange these data into the RINEX GALILEO
navigation message format. The four navigation messages comprise Freely Acces-
sible Navigation (F/NAV) Integrity Navigation (I/NAV) and Commercial Naviga-
tion (C/NAV) data. F/NAV messages are provided via an Open Service (OS) data
stream, the C/NAV message format is intended for the purpose of Commercial Ser-
vices (CSs), and finally the I/NAV message format is shared among both mentioned
user domains and should support open and commercial services. Unlike F/NAV,
I/NAV provides a dual-frequency service enabling to receive double the information
rate as compared to the F/NAV service. However, if received by a single frequency
user, the data rate performance is the same as of the F/NAV service. Alongside these
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message services, the GALILEO system also provides special encrypted Public Reg-
ulated Services (PRSs) in the form of Governmental Navigation (G/NAV) messages,
and its use is restricted to governmental authorities only. The last column of table
2.1 indicates what services are distributed on which frequency channel.

The navigation data messages are maintained and regularly updated by the GALILEO
Ground Mission Segment (GMS), which also comprises sensor and uplink stations.
Payload and data management as timing service provision or satellite signal tracking
and monitoring activities are among the basic tasks of the GMS. The resulting mea-
surements are used by associated ground segment facilities to estimate ephemerides
data or satellite clock parameters or to generate and evaluate the Signal-In-Space-
Accuracy (SISA)9 information to mention only a few fundamental GMS tasks asso-
ciated with the service provider’s scope of responsibility. To meet the data integrity
and navigation performance level requirements, service parameters are continuously
monitored, (re-)determined and frequently uplinked to the spacecrafts. These serve
as validation and qualification hallmarks for the corresponding navigation data set
or the satellite health status. A holistic view over the GALILEO specific ground
infrastructure and related operations is presented in [54] page 378 ff.

For the purpose of completeness, we elucidate some fundamental aspects of the
signal characteristics of the GALILEO satellites. However, an in depth discussion
and analysis requires the development of the complex theoretical framework of signal
design, which is well explained in [13] with special focus on the GALILEO system.
From a GNSS user perspective, it is important that each satellite’s signals and mes-
sages can be reliably and uniquely identified. This is a challenging requirement, since
all satellites continuously broadcast simultaneously on a shared frequency band and
additionally non-intentional interference by means of transmissions of other (navi-
gation) satellite systems also crosstalk to the same spectrum. Moreover, the effect of
signal dropping or intentional interference should also be minimized. Therefore, the
signal must fulfill a certain level of robustness. Signals are thus modulated with par-
ticular Pseudo-Random Noise (PRN) spreading code sequences, which are unique
to each satellite, to obtain a bandspread signal. To achieve this, the modulated
information data/bit stream is multiplied with a specific spreading code sequence,
which is generally of higher frequency than the original bit stream. In this way,
the signal’s power spectrum is distributed over a wider frequency domain, while af-
ter signal reception and de-spreading or de-modulation at the receiver, the original
power spectrum can be recovered. As an example, the ratio between the original bit
rate fb and the resulting chip rate fc of both the E5 signals amounts 1/10 after mod-
ulation. This equivalently states that the resulting spectrum is ten times larger. The
techniques that manage spreading and de-spreading of the data stream are known
as Spread Spectrum (SS) modulations. If signal disturbances through jamming are
channeled through portions of the target frequency spectrum, they are spreaded
after de-modulation and appear as noise for the user, which also makes information

9The SISA is an integrity indicator and indirectly characterizes space segment related error
sources and evaluates their influence on the navigation performance. On the satellite system
side, error sources can be satellite system failures, outages or degradation effects, but also satel-
lite ephemerides and clock errors. There is a predefined index metric encoded in the GALILEO
navigation message stream ([119] page 58) that indicates different levels of accuracy.
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transmission more resistant against intentional interference. Spreading codes must
be structured such that, after applying a matched filter or correlation filter at the
receiver, ideally the autocorrelation envelopes of all other code sequences received
at the same time instance are flat, which would correspond to uncorrelated noise.
That’s why these code sequences are also said to be orthogonal signal vectors: If the
chip pattern of a particular transmitted code sequence is multiplied with that of a
different code sequence, the product gives zero. The implementation of the special
coding scheme is known as Code Division Multiple Access (CDMA) and all of the
signals listed in 2.1 are SS CDMA encoded. This is convenient from a user’s point
of view, as it allows the differentiation of multiple spread spectrum messages on
a shared frequency band where many users are transmitting signals simultaneously
and further prevents unauthorized users from encoding dedicated messages. In [119],
the GALILEO specific spreading (tiered) code characteristics and their generation
technique as well as the concrete PRN code sequences of each GALILEO satellite
are described.

In addition the SS modulation, the GALILEO signal processing pipeline further
applies types of Binary Offset Carrier (BOC)-based subcarrier modulation proce-
dures to all generated signal components. Negotiations between the European Union
and the United States on the common use of frequencies of the GPS and GALILEO
systems lead to the final decision to consider BOC[1, 1] as the baseline modulation
technique for both constellations10. This was motivated mainly to ensure compat-
ibility between GALILEO and GPS signal spectra. By using the BOC, a good
spectral isolation is achieved, as well as suitable performance in terms of robustness
against multi-path effects and phase noise. BOC is realized by multiplying each chip
of the original signal component by a subcarrier composed of sequences of pairs con-
sisting of +1 and -1. The ratio between the frequency fs of the additional subcarrier
and the chip rate fc of the modulated signal is classified by two integer numbers
n and m, which also inspires the notation BOC[n,m]. These numbers represent
multiples of a reference frequency f0, where n/m = fs/fc. The mixing process due
to a BOC[n, 1] modulation thus leads to a symmetrical separation of the signal spec-
trum, with each of the spectral sidelobes shifted by the same amount ±n · f0 away
from the center. This outlines how the BOC subcarrier modulation can be used
to distribute the spectral energy of the respective signal more efficiently and gives
a methodology to design spectral compatibility between different satellite systems.
As can be seen from the table below, there are several other methods based on the
BOC modulation technique that also significantly improve the baseline method. For
further detailed descriptions and analyses of all other types of modulations listed,
the reader is referred to the literature cited above.

10See https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:348:0003:

0016:EN:PDF about the Agreement on the promotion, provision and use of Galileo and GPS
satellite-based navigation systems and related applications
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Signal
Frequency
f MHz

Channel
BW

∆f MHz
Nav. messages

& service
Modulation

type

E1 1575.420
E1A
E1B
E1C

24.552
PRS data
I/NAV / OS / CS
pilot

BOCcos (15, 2.5)
MBOC(6, 1, 1/11)

E5a 1176.450
E5a-I
E5a-Q

20.460
F/NAV
OS / CS

AltBOC(15, 10)

E5b 1207.140
E5b-I
E5b-Q

20.460
I/NAV / OS / CS
pilot

AltBOC(15, 10)

E5
(E5a + E5b)

1191.795 51.150

E6 1278.750
E6A
E6B
E6C

40.920
PRS data
C/NAV / CS
pilot

BOCcos (10, 5)
BPSK(5)

Table 2.1: GALILEO satellite signal plan.
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2.3 GNSS basic observables

2.3.1 Pseudo-ranges

A common way of determining the distance between a receiver and a satellite is
to measure the satellite’s signal time-of-flight. If one knows the time instant ts at
which the satellite transmits its signal as well as the time of signal reception tr
by the receiver, the apparent geometrical range ρ̃sr can be derived from the signal
time-of-flight:

ρ̃sr = c (tr − ts) (2.1)

Technically, the time difference tr− ts is usually determined by continuously search-
ing for the specific ranging code11 delay at which a maximum (auto-)correlation
between the satellite’s signal and the corresponding replica signal produced by the
receiver occurs. In fact, given a signal from a particular channel, its correlation
in the time domain is simultaneously performed with the search of the appropri-
ate Doppler shift in the frequency domain. This is done to amplify the correlation
function and hence helps increasing the detectability. If there are no further infor-
mation about the orbital elements or position and velocity of the satellites in view,
all potential pairs of code delays and Doppler shifts must be sequentially tested
against a received signal during the acquisition phase12. Given that the receiver
state is completely known, if satellite almanac and/or ephemerides data are known
as well, the code delay and Doppler search turns out much less extensive. Since the
pseudo-range measurements are not free from errors such as instrumental or signal
propagation delays due to varying signal propagation conditions within the atmo-
sphere, they do not indicate the real geometrical distance ρsr between receiver r and
satellite s. The time of transmission of the satellite’s signal is defined by its atomic
clock and the time of signal reception is tagged by the receiver’s clock. Since the
clocks of both the satellite and the receiver are independent and hence principally
running asynchronously13, one also has to account for any errors introduced among
these timing systems. In that regard, for the pseudo-range P s

r,f (t) one can transcribe
equation 2.1 as follows:

P s
r,f (t) = ρsr(t) + c (∆tr(t)−∆ts (t− τ)) + EP (2.2)

Equation 2.2 now isolates the real geometrical distance ρsr (t) that corresponds to
the signal time-of-flight τ from the remaining receiver and satellite clock error terms
∆t. Additional corrections and likewise the pseudo-range measurement noise term
are subsumed under EP . The time argument t relates to a well-defined continuous

11The ranging codes are identical to the aforementioned PRN code sequences, which are dis-
tributed on several channels.

12Actually, the receiver must also compare against all locally stored satellite ranging code se-
quences, as long as no satellite almanac data is available.

13Due to the drift characteristics of the on-board atomic clocks, a time synchronization process
with GALILEO System Time (GST) has to take place on an hourly basis to keep the difference of
the ground and space segment time sufficiently small.
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time scale as GPS System Time (GPST) or GST14 for the individual measurement
model terms. The level of pseudo-range measurement noise directly depends on the
total signal Bandwidth (BW). We assume that the power spectrum is dominated
by white noise. Therefore, its Power Spectral Density (PSD) evenly distributes the
power intensity over all frequencies, i.e. it is constant over a certain frequency range.
Consequently, if the BW is doubled, the overall noise level will also double.

According to table 2.1, the BW of both E5 signals is 20.460MHz, i.e. the av-
erage correlation width corresponds to about 50ns or roughly 15m. Assuming that
nowadays receiver can determine the signal correlation peak with 1% accuracy, the
measurement noise is at a level of ≈ 0.15m.

2.3.2 Carrier phases

In contrast to pseudo-ranges, other than tracking the time difference of signal trans-
mission ts and signal reception tr by continuously analyzing the ranging code delay,
carrier phase observables directly measure the phase difference of space- and ground
oscillators. Technically, down-conversion mixes the incoming signal of frequency f s

with a reference signal from a local oscillator in a superheterodyne receiver, which
has a frequency fr. During the frequency mixing process in the receiver, sums and
differences of the input and local oscillator frequencies are produced15. One of the
intermediate frequencies16 of the emerging sidebands is then used as the beat fre-
quency fB, which is actually used to derive the carrier phase signal. The carrier
phase definition has to be extended by an integer number N s

r,f , since the phase
measurement or rather phase difference measurement is ambiguous up to an integer
multiple of whole cycles. This integer is known as the carrier phase ambiguity. It
can be interpreted as the total number of full phase cycles of a signal with frequency
f that fits within the time span since transmission of the satellite’s signal and the
time instant when the receiver locks up on the signal’s phase. Each time the receiver
loses track of the satellite’s signal, the carrier phase ambiguity must be repeatedly
estimated. As a result, an artifact called cycle slip occurs producing a jump in the
measurement data. One arrives at the following mathematical description for the

14The GST is maintained by the Precise Timing Facility (PTF) of the GMS. The GST starting
epoch is Sunday, 22 August 1999 and it is basically synchronized with International Atomic Time
(TAI) and differs from Coordinated Universal Time (UTC) by a number of leap seconds as is also
the case for GPST. The actual offset between GST and GPST is kept within limits of nanoseconds
and the difference between GST and UTC, after application of scheduled leap seconds, is managed
such that it does not exceed 50ns.

15Mathematically this results from the product-to-sum identity, such that for the mixed (mul-
tiplied) signal s12 generated from two other signals s1 and s2 with frequencies f1 and f2 one can
write:

s12(t) = sin (2πf1t) sin (2πf2t) (2.3)

=
1

2

(
cos

(
2π (f1 − f2) t

)
− cos (2π (f1 + f2) t)

)
(2.4)

Φr,f1(t)− Φs
f2
(t)

16Filtering for lower intermediate frequencies has the advantage that one can achieve comparably
good levels of selectivity with only small technical efforts. This is why the process is usually referred
to as down conversion.
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carrier phase observable:

Φs
r,f (t) + N s

r,f =
(
Φr,fr(t)− Φs

fs(t)
)

(2.5)

In the above definition 2.5 t is related to a common receiver time scale as adopted in
the previous section. The interpretation of pseudo-range measurements introduces
the notion of apparent geometrical range, which is coupled to the signal time-of-
flight. Apart from the ambiguity term, carrier phases can be considered to relate
to the same concept. This motivates the notion of phase pseudo-ranges. It can be
assumed that the phase of the wavefront emitted by the satellite at time ts is the
same than the phase arriving at the receiver at some later time t. As the signal
is propagating from the satellite to the receiver, it generates a certain number of
oscillations, where computing the time needed for one oscillation cycle just requires
a reference frequency f as a conversion factor. The total propagation time of the
signal is thus fixed by the total oscillation count over a certain period at some
position where the signal is intercepted: τ = Φ(t)−Φ0

f
, where τ again represents the

signal time-of-flight related to the time instance of signal transmission and Φ0 is an
initial or fractional phase that has to be defined for each oscillator or clock. We
assume that the satellite’s and the receiver’s clock both run at the same frequency
f . Translating these findings to the terms on the rhs of equation 2.5 leaves us with:

Φr,f (t) = ft + Φr,0 (2.6)

Φs
f (ts) = fts + Φs

0 = f (t− τ) + Φs
0 (2.7)

Inserting both equations 2.6 and 2.7 into 2.5 gives us:

Φs
r,f (t) = −fτ + (Φr,0 − Φs

0)−N s
r,f (2.8)

The first term in equation 2.8 can be finally rephrased in terms of the apparent
geometrical range ρ̃sr(t) between the receiver and the satellite, which leads to the
interpretation of phase pseudo-ranges. After multiplication of 2.8 with the corre-
sponding wavelength λf , we get:

λfΦs
r,f (t) = ρ̃sr(t) + λf (Φr,0 − Φs

0)− λfN
s
r,f (2.9)

Similar as explained for the pseudo-range observable, the same error sources as
previously presented also affect the carrier phase measurements. The difference of
fractional phases Φr,0−Φs

0 are directly related to clock dithering effects. We adhere
to the notation for clock errors in 2.2 and finally can write:

λfΦs
r,f (t) = ρsr(t) + c (∆tr(t)−∆ts (t− τ))− λfN

s
r,f + EΦ (2.10)

ρ now captures the real geometrical distance and the last term EΦ combines the
remaining systematic errors relevant for the accurate description of carrier phase
observations as well as the carrier-phase measurement noise. At present time it is
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possible to resolve the phase measurement with an accuracy of 1%, which, depending
on the signals used, converts into ranging noise levels of a few millimeters.

2.3.3 Doppler shift

The Doppler effect is a further independent observable that can be used to directly
record the relative (radial) velocity between two objects. If an electromagnetic
signal with an apparent frequency f s is exchanged between two observers moving
relative to each other, a change in frequency ∆f = fr − f s can be directly observed
from the arriving signal, which is known as the instantaneous Doppler shift. As
previously defined, we take fr as the reference frequency generated by the local
oscillator of the receiver. This frequency shift ∆f is exactly the beat frequency
fB discussed in connection with carrier phase measurements and associated with
the beat phase Φs

r,f (t) appearing in equation 2.5, which is henceforth denoted ΦB.
If the arriving signal’s frequency f s is larger than its actual value at the time of
transmission, the beat frequency fB increases. This is tantamount to a positive
phase change dΦB

dt
> 0 and measures the signal of an approaching satellite. Inversely,

if the incoming frequency becomes smaller, which is caused by a negative phase
change dΦB

dt
< 0, this indicates that the objects move away from each other. The

integral over subsequent frequency shifts thence must be related to the total change
in distance between the moving objects:

ΦB =

∫ tr2

tr1

(fr − f s) dt ∝ −cρ∆ρ (2.11)

which is also known as the integrated Doppler shift. Note that the distance term
in 2.11 has a negative sign, which is consistent with the previous explanation. The
phase term ΦB represents the number of integer phase cycles plus a fractional phase
value. The integral boundaries tr1 and tr2 describe an arbitrary time interval, over
which the beat phase is recorded and cρ is a unit conversion factor that is to be
determined. If for the first term fr of the integrand, these times are rewritten in
terms of the sum of transmission times ts1, ts2 and the corresponding signal times-
of-flight τ1, τ2, one yields:

ΦB =

∫ ts2+τ2

ts1+τ1

frdt−
∫ tr2

tr1

f sdt (2.12)

Carrying out integration results in:

ΦB = fr
((
ts2 − ts1

)
+ (τ2 − τ1)

)
−
∫ tr2

tr1

f sdt (2.13)

Since the phase count must be conserved, we can assume that the integral over
the received, apparent frequency f s in expression 2.13 equals an integral over the
actual transmitted frequency, whereas the boundary terms must be replaced by the
associated transmission times ts1 and ts2:

ΦB = fr
((
ts2 − ts1

)
+ (τ2 − τ1)

)
−
∫ ts2

ts1
f sdt (2.14)
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This eventually leads to the following expression for the integrated Doppler shift:

ΦB = (fr − f s)
(
ts2 − ts1

)
+ fr (τ2 − τ1) (2.15)

⇔ ΦB = (fr − f s)
(
ts2 − ts1

)
+ fr

ρsr,2 − ρsr,1
c

(2.16)

If we now assume that the frequency of the receiver is calibrated to the transmit
frequency of the satellite fr = f s, such that the first term in 2.16 cancels out, we
get the desired rhs expression for equation 2.11.

Unlike the instantaneous Doppler measurements, its derivation from integrated fre-
quency shifts (2.11) is more accurate. After satellite signal acquisition, the receiver
starts providing accumulated carrier phase cycle counts. The continuously formed
values can then be subjected to a moving average operation to obtain a smoother
result for the carrier beat phase ΦB and thence, after differentiation, a low-pass
filtered beat frequency signal free of short-term fluctuations. Conversely, instanta-
neous Doppler data provide a more noisy snapshot of the beat frequency fB and
likewise for the line-of-sight velocity measurement vρsr related to some time interval
dt . If one chooses the time interval sufficiently small, one can directly verify after
differentiation of equation 2.16:

dΦB

dt
= fB = −fr

c
vρsr (2.17)

Doppler shift observations are more precise than pseudo-range measurements and
the current accuracy is in the mHz range. Taking the transmit frequency f s

E1 of the
GALILEO E1 band, this results in a velocity error of ≈ 1.9× 10−4ms−1.

The Doppler shift sign convention in RINEX (mixed) observation files are defined
such that positive frequency shift recordings correspond to approaching satellites,
wheres negative shifts indicate satellites moving away, which follows the logic above.
The observation data collected in these files are given in values of Hz and the mea-
surement precision also reaches levels of mHz. Depending on the satellite system
and RINEX observation code, this corresponds to ≈ 1.0− 3.0× 10−4ms−1.

Doppler observations are subject to the bias rates of the aforementioned system-
atic clock errors, which were left out in the preceding derivation. After introduction
of these errors, equation 2.17 can be rephrased as follows:

Ds
r,f (t) = −1

λ
vρsr − f

(∆tr(t)−∆ts(t− τ))

dt
+ ED (2.18)

Ds
r,f refers to the Doppler shift measured on frequency channel f between a certain

receiver and satellite. For completeness, as with the other measurements, the term
ED is adopted to cover additional systematic errors including noise terms.
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CHAPTER 3

Orbit determination and SRP parameter estimation

The overall goal of this chapter is to investigate a new high resolution Solar Radiation
Pressure (SRP) model and demonstrate its performance in comparison with current
standard SRP models. However, it is not within the scope of this work to verify
and validate this model under the hat of precise orbit determination, it should
rather outline the general importance of detailed Non-Gravitational Disturbances
(NGD) modeling for the purpose to improve orbit parameter estimation results
especially with regards to the dependence on the SRP model used. We also show
that the accuracy of clock data estimation is mainly limited by the accuracy of SRP
modeling and raise its relevance for high-precision clock applications like the general
relativistic redshift test, which is at the core of our analysis in chapter 4. Equation
1.19 describes that the speed of a satellite’s clock varies with the periodicity of
its orbit as also do SRP-related effects. This gives evidence that any perturbation
mismodeling associated with effects of the same periodicity is thus detrimental for
applications like a precision demanding redshift test.
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3.1 Basic observation equations

Supplementary to the previously derived observation equations, we now consider
in more detail, in addition to the clock error terms, the systematic measurement
errors subsumed under E, which enter the equations 2.2, 2.10, and 2.18. To give a
short preview, the most significant effects to be considered in accurate measurement
modeling are orbital perturbations, receiver or satellite clock biases as well as other
signal propagation delays due to interactions with the different atmospheric layers.
Moreover, there are other types of systematic errors that must be considered in
the observation equations depending on the positioning performance needs. Figure
3.1 represents the proportions among the main contributors of the aforementioned
effects. For reasons of clarity, these are organized into two groups: signal propagation
and orbit-related position errors and both are converted to meters. For the latter,
we obtained the position errors ∆ρ from one-day arc simulations for the satellites
GSAT0202 and GSAT0201, in which the respective effect responsible for ∆ρ is not
taken into account. Other than third body perturbations arising from the Sun and
the Moon, perturbations due to Earth’s geopotential are even more pronounced (see
also table 3.1 for a more comprehensive view on perturbation sources and effects).
Since these disturbances by far outnumber the effects shown here in magnitude,
they are not part of the charts. For the same reason, in the lhs pie chart we
leave out the portions that quantify clock biases, which typically amount 300 −
500km. Nevertheless, to conclude on the illustration, it becomes evident that the
consideration of SRP on the orbit side is of paramount importance.

Propagation delay sources

∆trel

dP Instr.

IP Iono.

T Tropo.

mP Multip.

< 13m

< 1m

< 50m

< 20m
< 4m

Orbit error sources

∆ρSRP

∆ρ#

∆ρ⊙

< 100m

< 250m < 500m

Figure 3.1: Sources of pseudo-range modeling errors.
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The complete set of observation equations read:

P s
r,f (t) = ρsr (t) + c (∆tr(t)−∆ts(t− τ)) + T s

r

+IsP,r,f + c
(
dP,r,f (t)− dsP,f (t− τ)

)
+ ms

P,r,f (t) + ϵP (3.1)

λfΦs
r,f (t) = ρsr (t) + c (∆tr(t)−∆ts(t− τ)) + T s

r

−IsΦ,r,f + c
(
dΦ,r,f (t)− dsΦ,f (t− τ)

)
+ ms

Φ,r,f (t)− λfN
s
r,f

+λf∆ΦWU + ϵΦ (3.2)

Ds
r,f (t) = − 1

λf

vρsr − f
d�sr (t)

dt
+ ϵD (3.3)

P s
r,f = Pseudo-range [m]

Φs
r,f = Carrier phase measurement in

phase cylces

Ds
r,f = Doppler shift measurement [s−1]

ρsr = Distance between receiver r and
satellite s [m]

||rr(t)− rs(t− τ)||

∆tr,∆ts= Receiver and satellite clock biases
for P and Φ [s]

dr,f , d
s
f = Receiver and satellite instrumental

bias for P and Φ [s]

±Isr,f = Ionospheric path delay [m]

T s
r = Tropospheric path delay [m]

ms
r,f = Multi-path error [m]

λf = Wavelength corresponding to ob-
servation frequency f [m]

N s
r,f = Total number of phase cylces of car-

rier signal with frequency f

∆ΦWU = Phase wind-up in fractions of the
wavelength λ

d�sr
dt

= Clock rate �sr = (∆tr(t)−∆ts(t− τ))

ϵ = Measurement error

Each of the first lines of equations 3.1 and 3.2 just contain frequency independent
terms. Corrections that account for relativistic effects like the gravitational time
dilation ∆trel are already contained in the timing error terms ∆t in equations 3.1
and 3.2, while for the Doppler measurements 3.3 this is absorbed analogously in the
clock rate term. Satellite corrections as the clock bias ∆ts(t − τ) or the satellite’s
position rs(t − τ) are time shifted by the amount τ in order to relate them to the
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correct time of transmission of the corresponding received signal.

GNSS satellites transmit signals on different frequency bands, see table 2.1 for the
signal plan of the GALILEO satellite. This allows to combine different measure-
ments to facilitate the analysis of certain effects from the spectrum of systematic
error sources or get rid of particular terms. An example of a very useful combination
is the ionosphere-free combination RIF , which can be formed by a linear combination
of two pseudo-range or carrier phase observations recorded by a dual-band receiver:

Rs
r,IF = Rs

r,f1,f2
= aRs

r,f1
− bRs

r,f2
(3.4)

a =
f 2
1

f 2
1 − f 2

2

, b =
f 2
2

f 2
1 − f 2

2

(3.5)

where RIF is a placeholder for either P s
r,IF or Φs

r,IF and IF is an identifier for a certain
frequency combination. For GALILEO users, for example, typical combinations
involve E1/E5a and E1/E5b signal pairs. Application of equation 3.4 removes the
first order ionospheric effect (3.41) from pseudo-range or carrier phase observations
that accounts for up to 99.9% of the total propagation delay. Subjecting a pair of
pseudo-range observations 3.1 to equation 3.4 brings us:

P s
r,IF = ρsr + c

(
∆t̂r −∆t̂s

)
+ T s

r + ms
P,r,IF + ϵP,IF (3.6)

From this equation on, we omit the time dependence in this section to simplify the
notation. To obtain expression 3.6, we recast definition 3.1 to construct P s

r,f1
and

P s
r,f2

, respectively. As a first step, we redefine the clock error terms ∆t by ∆t̂ in

terms of mapping the instrumental biases to the clock offset. For ∆t̂s one receives:

∆t̂s = ∆ts + adsP,f1 − bdsP,f2 (3.7)

Analogous to 3.7, one can form ∆t̂r. Pairs of ionospheric and instrumental delay
terms, which appear through a combination of observations P s

r,f1
and P s

r,f2
each

linearly dependent on frequency1. This suggests to lump these contributions into a
new term Îf :

1In a linear combination of signals, the first order ionospheric delays are linked via the relation-
ship:

IsP,r,f2 =
f2
1

f2
2

IsP,r,f1 (3.8)

As per GALILEO interface control document [119], the signal dependent group delay GDP,f1

is a function of the difference of the instrumental delays: GDP,f1 = −b
(
dsP,f2

− dsP,f1

)
and the

relationship between the group delays associated with different signals is given by:

GDs
P,f2 =

f2
1

f2
2

GDs
P,f1 (3.9)

which is of the same form than the term for the ionospheric delay.
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ÎP =
1

b
IsP,r,f + ∆dP (3.10)

where ∆dP corresponds to the difference dsP,f2 − dsP,f1 . One can now write:

P s
r,f1

= ρsr + c
(
∆t̂r −∆t̂s

)
+ bÎP1 + T s

r + ms
P,r,f1

+ ϵP (3.11)

P s
r,f2

= ρsr + c
(
∆t̂r −∆t̂s

)
+ aÎP2 + T s

r + ms
P,r,f2

+ ϵP (3.12)

We now resort to the definition 3.4 and substitute the placeholder by the pseudo-
range components given by 3.11 and 3.12. This leads to equation 3.6. The ionosphere-
free combination for carrier phases reads:

λNΦs
r,IF = ρsr + c

(
∆t̂r −∆t̂s

)
+ λNλW

(
N s

r,f1

λf1

−
N s

r,f2

λf2

)
+λN∆ΦWU + ms

Φ,r,IF + ϵΦ,IF (3.13)

λW =
c

f1 − f2
, λN =

c

f1 + f2
(3.14)

NIF = λW

(
N s

r,f1

λf1

−
N s

r,f2

λf2

)
(3.15)

where λW and λN label virtual wavelengths called wide-lane and narrow-lane2. Af-
ter building 3.13 from two carrier phase observations 3.2, the linear factor (f 2

1 − f 2
2 )

in the denominator on the lhs cancels, so that just λN remains as a coefficient. That
is the reason why the ionosphere-free combination is also called narrow-lane com-
bination. One recognizes, that the integer nature of the carrier phase ambiguity of
this new observation is lost after the use of equation 3.4. Due to the structure of
the expression 3.13, it is not possible to disentangle the ambiguity terms and the
corresponding coefficients. The third term 3.15 in parentheses on the rhs of formula
3.13 is therefore identified as the float ambiguity NIF .

The overall measurement error, i.e. standard deviation of the ionosphere-free com-
bination of pseudo-ranges P or carrier phases Φ is a function of the combination
coefficients a and b. If one takes σX = σP or σX = σΦ as the corresponding single-
observation measurement errors, propagation of the combined measurement uncer-
tainty results in: σIF =

√
a2 + b2σX . Projecting this to the E1/E5a combination

of pseudo-range observations, one ends up with σE1,E5a ≈ 2.6σP . For the sake of
convenience, we assumed that single-observation measurements with σE1 and σE5a

signals produce the same amount of noise σP .

Depending on the use case, observation differences are conventionally used to elim-
inate clock error terms from the observations, which, for example, facilitates the
isolation of orbit-related errors. If one forms single differences with respect to a

2The naming is due to the fact that the terms λW = c
f1−f2

and λN = c
f1+f2

describe signals
with larger and smaller virtual wavelength, respectively.
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station ri that recorded signals from two different satellites simultaneously, the cor-
responding station clock error terms cancel out, while a difference of satellite clock
biases remains. For the latter, the governing measurement equation is:

∆P
si,sj
ri,f

=
(
P si
ri
− P sj

ri

)
(3.16)

∆P
si,sj
ri,f

= ∆ρsi,sjri
+ c∆tsi,sjri

+ ∆T si,sj
ri

+ ∆I
si,sj
P,ri,f

+ · · · (3.17)

where δt
si,sj
ri can be written as:

∆tsi,sjri
= (δtri − δtsi)− (δtri − δtsj) (3.18)

To comply with the conventional notation ∆ for single differences, we have replaced
the ∆ in formulas 3.2 and 3.1 for receiver and clock errors by δ. Using the equation
3.17, one can form a second single difference with respect to another station rj and
compute double differences ∇∆:

∇∆P
si,sj
ri,rj ,f

=
(
P si
ri
− P sj

ri

)
−
(
P si
rj
− P sj

rj

)
(3.19)

∇∆P
si,sj
ri,rj ,f

= ∇∆ρsi,sjri,rj
+∇∆T si,sj

ri,rj
+∇∆I

si,sj
P,ri,rj ,f

+ · · · (3.20)

Thus, if one takes the difference of two single differences, one obtains a double
difference in which all clock error terms now cancel, as can be understood from
equation 3.20. One quickly verifies that:

∇∆tsi,sjri,rj
= ((δtri − δtsi)− (δtri − δtsj))−

((
δtrj − δtsi

)
−
(
δtrj − δtsj

))
= 0 (3.21)

It is of major importance that all observations refer to one and the same epoch. If
the observations are not synchronized, the advantages of difference formation cannot
be exploited. From a practical point of view, it is usually difficult to find contiguous
sets of common observations and this is usually linked to extensive data preparation
in terms of selection and filtering. As a conclusion, forming differences enables to
strip off the systematic clock errors from the observations, thus making it possible
to decouple orbit errors from clock errors in parameter estimation procedures.
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3.2 GNSS Measurement modeling

In the following section, we describe the systematic effects behind the individual
terms of the observation equations 3.3, 3.2 and 3.1. Within the scope of this work,
we will not discuss such corrections, which are commonly used for a centimeter reso-
lution of the measurements. This includes satellite and ground antenna phase center
offsets and corrections, site displacements due to Solid Earth Tides or polar tides
as well as higher order ionospheric corrections. We also neglect multi-path effects
from our considerations. Multi-path effects generally affect both code and phase
observations and are usually caused by signal reflections within the environment.
Therefore, the effects of multi-path can be influenced by the orientation and thus
the adjustment of the tilt and height of the antenna. As explained in section 3.5,
we try to minimize the effects by filtering measurement data associated with low
elevation observations.

3.2.1 Satellite and receiver clock corrections

Time correction is conducted with a set of satellite specific clock bias and drift
parameters {a0, a1, a2}. These are estimated by the responsible Orbit determina-
tion and time Synchronization Processing Facility (OSPF) of the GMS, regularly
uploaded via the Uplink Station (ULS) infrastructure and finally contained in the
broadcast navigation messages F/NAV and I/NAV. These parameters are the co-
efficients of a time dependent polynomial of second order, which enables to predict
the individual non-stochastic, long-term clock error ∆ts(t) of the satellites’ atomic
clocks caused by various mechanisms. More precisely, it can be used to predict the
clock correction with respect to an arbitrary time interval spanned by some time
t, measured in a well-defined system time scale, and a reference time instant called
time of clock ttoc, which is also part of the navigation message. If we take the
time of message transmission t = tS as some arbitrary time instant, the associated
error-corrected time t̃S given in the system time scale can be calculated as:

t̃S = tS −∆ts
(
tS
)

+ ∆trel + ϵc (3.22)

t̃S = tS −
(
a0 + a1

(
t̃S − ttoc

)
+ a2

(
t̃S − ttoc

))
+ ∆trel + tBGD + ϵc (3.23)

Both equations also contain a stochastic noise term ϵc that characterizes the spe-
cific clock noise. Complementary to the activities of the named GMS facilities, the
PTF is the responsible GST timing service provider. It establishes a highly sta-
ble and accurate GALILEO system time scale constituting the reference for time
synchronization of the space segment with its different on-board atomic clocks and
the ground segment’s master clock system. The satellite time correction parameters
must be updated every few hours ensuring an accurate prediction of t̃S, since its
value must be within valid boundaries considering the individual clock behavior.
The update frequency depends in particular on the respective clock stability.

Chapter 4 deals with the characterization of the specific atomic clocks of the GALILEO
satellites GSAT0202 and GSAT0201 in preparation to the general relativistic red-
shift analysis at the core of that chapter. Of particular interest is the analysis of the
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stochastic noise ϵc as well as the relativistic term ∆trel affecting the behavior of the
atomic clocks. The latter maps a periodical component due to the orbit eccentricity
and is given by equation 1.20. For the two GALILEO satellites mentioned above
the term is of special importance, because due to satellites’ high eccentric orbits,
the relativistic timing effect varies extraordinarily and so does the observed satellite
range.

As per interface document, [119], the satellite time correction ∆ts is related to
the ionosphere-free combination, by default, and thus contains an extra term, which
takes into account the total group delay, also referred to as Broadcast Group Delay
(BGD). Single frequency users must therefore compensate for this BGD to correctly
describe the observation representation as stated by 3.1. The BGD depends on the
difference of the satellite-related instrumental delay terms: DCBf1,f2 = dsP,f1−dsP,f2 ,
which is typically known as Differential Code Bias (DCB) or inter-frequency bias3 .

3The BGD depends on the frequency and the code combination used. The F/NAV and I/NAV
messages encode the BGDs for the signal combinations E1/E5a and E1/E5b.
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3.2.2 Tropospheric effects

The Earth’s atmosphere consists of several layers that affect signal propagation
time. For micro wave signals, such as GNSS L-Band signals, both the troposphere
(0− 15km) and the stratosphere (15− 45km) are essentially neutral, non-dispersive
media4. These signals travel with the same phase and group velocity, since their
corresponding refractivity NTrop stays rather unchanged for frequencies f up to
15GHz. The tropospheric path delay T s

r between a satellite s and a receiver r can
be written as:

T s
r = 10−6

∫
NTropds (3.24)

where the expression 3.24 is integrated over a certain path s. The path delay can
amount up to 20m and therefore its prediction is of significant interest. The refrac-
tivity depends on the molecular makeup of both lower atmospheric layers, as well
as on the present thermodynamic state profile describing the local weather condi-
tions at the antenna site and over the slant range to the satellite. In that regard,
one distinguishes between two different path delay contributions that originate from
different refractivities: A dry component due to the hydrostatic conditions of the
atmosphere as well as a wet component. The refractivity index can thus be decom-
posed into NTrop = NTrop,H + NTrop,W , such that 3.24 can be expressed as:

T s
r = 10−6

∫
NTrop,Hds + 10−6

∫
NTrop,Wds (3.25)

The first part relates to the zenith hydrostatic delay (ZHD) and only depends on
the total surface air pressure, whereas the other part relates to the zenith wet delay
(ZWD), which further depends on both the local temperature as well as the partial
water vapor pressure profile. Thereby, the hydrostatic component ZHD accounts for
90% of the signal propagation delay [61], additionally depends on the site’s location
and is also subject to seasonal variations of ±10% [80]. For the prediction of this
component, the model of Saastamoinen [91] is often used. the ZHD is modeled as
follows (as compared to [80]):

ZHD =
0.0022767

[
m

hPa

]
· P0

1− 0.00266 · cos 2ϕ− 0.00000028
[
1
m

]
·H

(3.26)

Where P0 [hPa] is the total air pressure as measured at the receiver’s antenna refer-
ence point, ϕ is the geodetic latitude of the antenna’s site with respect to the Earth’s
equator and H [m] gives its geodetic height. The function in the denominator con-
taining the both latter variables is an adaption term that takes into account the

4In fact, a negligible anomalous dispersion around the resonance frequencies of mainly water
vapour and oxygen takes place. Unlike the behavior in a dispersive medium like the ionosphere
the refractive index increases with increasing frequency.
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latitude dependent mean gravitational acceleration5. The accurate determination of
the ZWD is heavily involved, since it requires knowledge about all thermodynamic
and meteorological subtleties as water vapor pressure or temperature distribution
within the atmosphere and their corresponding seasonal, diurnal or hourly fluctua-
tions. For practical reasons, the ZWD is therefore typically estimated jointly with
other states and parameters in an estimation scheme. For the purposes of this
study, for the determination of the total tropospheric delay, we start with a model
of Saastamoinen that allows to predict the zenith total path delay ZTD including
ZHD and ZWD. According to [94], the ZTD can be calculated from the following
equation:

ZTD =
0.0022767

[
m

hPa

]
(1 + D)

cos z

(
p +

(
1255 [K]

T
+ 0.05

)
e− B tan2 z

)
+ δR

(3.27)

D = 0.00266 · cos 2ϕ + 0.00000028

[
1

m

]
·H (3.28)

Under the simplifying assumption of a standard atmosphere, one can then assign
empirical values to the input parameters pressure p [hPa], temperature T [K] and
partial water vapor pressure e [hPa] measured at the receiver’s antenna reference
point. Furthermore, B is a mapping correction depending on the height of the re-
ceiver station and δR is mapping correction bias depending on both the actual zenith
angle z and the receiver station’s height. These additional terms are tabulated and
can be found e.g. in [106]. In order to relate the slant path delay associated with
the apparent line-of-sight to the satellite to the actual zenith path delay, one con-
ventionally uses mapping functions. From a brief inspection of formula 3.27, we
see that it implicitly contains a mapping factor proportional to 1

cosz
. Another com-

mon approach is the usage of the mapping of Niell [74] with some Global Mapping
Functions (GMFs) MH (ϵ) and MW (ϵ) for both path delay contributions:

T s
r = MH (ϵ)ZHD + MW (ϵ)ZWD (3.29)

These functions MH (ϵ) and MH (ϵ) are computed using the following expression
3.30:

5In the pertinent literature given, the model for the zenith hydrostatic delay is also based on
an altitude dependent air density model. For the computation of the density distribution within
an air column, a model for the local gravitational acceleration is needed, which is also a function
of altitude. One could think of using a more complex model that considers a precise mapping of
the Earth’s surface at the corresponding site’s location to determine the correct extent of the air
column and the effect of the gravitational acceleration, accordingly. Instead of this, one introduces
a weighted mean gravitational acceleration and computes a correction for this value with respect
to the site’s height on a well-defined geodetic reference surface.
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M (ϵ) =
1 + a

1+ b
1+c

sin (ϵ) + a
sin(ϵ)+ b

sin(ϵ)+c

(3.30)

a (ϕ, tdoy) = aav (ϕ)− aamp (ϕ) cos

(
2π

tdoy − t0
365.25 [d]

)
(3.31)

With a set of coefficients a ∈ {a, b, c} for each functions, which are tabulated in the
respective literature for selected latitudes, such that one can interpolate their values
for arbitrary locations6. Once these values have been determined, formula 3.31 can
be applied for each of the parameters a ∈ {a, b, c} to also take into account their
temporal variations. The big advantage of this GMF is that it does not directly rely
on any meteorological parameter measurements, but the parameters are derived from
data products of global numerical weather simulations produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF). It also solely depends on
the latitude ϕ of the site of interest, the actual day of the year tdoy relative to an initial
day t0 and the elevation ϵ of the satellite with respect to a topocentric coordinate
system. Nevertheless, the model also implies some shortcomings, as discussed in [19].
The combination of the GMFs with the individual contributions in the expression
for the ZTD as given in 3.29 now compensates its mapping deficiencies. Figure 3.2
demonstrates the performance of the model as written in 3.29 and its relevance for
ground based station or satellite position estimation purposes.

6The mapping of Niell also considers a height correction term for the ZHD ∆M (ϵ, H), similar
to B appearing in formula 3.30
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Figure 3.2: The map shows the ground track of the satellite GSAT0202 as recorded
by the Geodetic Observatory Wettzell WTZ3 station in Bad Koetzting, Germany on
February, 11, 2017. The blue scatter plot in the top-left shows the pre-fit pseudo-
range residuals after subtraction of all known measurement corrections given in
equation 3.1. After Least-Squares adjustment of station coordinates as well as sta-
tion clock biases, the residuals change as given by the red scatter plots. The center
plot compares the adjusted residuals with those that have not been corrected for
tropospheric effects. The top-right figure reflects the output from the tropospheric
correction model 3.29, i.e. the slant path delays for the two parts of the one-day arc
shown on the map.

3.2.3 Ionospheric effects

The ionosphere extents from approximately 45km to 1000km above Earth’s surface
and a distinction is made between different layers called F -, E - and D layer7. Other
than the troposphere, the ionosphere consists mainly of plasma, i.e. charged particles
as ionized atoms, molecules and electrons, which are distributed less densely in
lower altitude regimes and more densely at higher altitudes. The presence of the
different layers and their degree of ionization mainly depends on the Sun’s irradiation
intensity, which is also coupled to the solar cycle (see also 3.3), and is therefore
subject to seasonal and diurnal changes. During day, the particles in the ionosphere
are ionized by Ultraviolet (UV) or X-ray radiation emanating from the Sun. Due to
the higher ion production rate stimulated predominantly by extreme UV radiation
at higher altitudes, the F -layer deforms and splits into 2 sub-layers F2 and F1.
In addition also the E - and D-layer form at lower altitudes in which also oxygen

7Ordered by their occurrence over altitude from high to low.
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and nitrogen atoms or molecules are excited by radiation in the far UV or Lyman-
alpha spectrum. The degree of ionization is typically measured in Total Electron
Content Units (TECUs) and is given in [1016e−/m2]. In periods of low radiation
intensity e.g. during night, the particles and molecules recombine and the individual
ionospheric regions disappear. However, the top F layer still persists independently
of the irradiation conditions. One of the characteristics of an ionized plasma is
the ability of dispersive interaction with electromagnetic waves. In amateur radio
applications for example, one takes advantage of this property and uses it to build up
so-called Distance Exchange (DX) communication links, which rely on the reflection
properties of the mentioned ionospheric layers. In particular, the F layer, which is
permanently available, serves as a favorable medium for these large distance links
making it possible to realize communication distances of 4000km or more with one
skip via Medium Frequency (MF) to High Frequency (HF) transmissions. As a
wieldy rule of thumb, the Maximal Usable Frequency (MUF) is often used as a
first estimation that gives the highest radio frequency at which sky waves are still
reflected at the ionosphere or equivalently the lowest frequency at which sky waves
just leave the ionosphere given a certain angle of transmission α measured between
antenna boresight direction and the local horizon. The MUF is defined as:

ωMUF ≈
ωc

sinα
(3.32)

which includes the critical frequency fc ≈ 8.98
√
ne that depends on the electron

density ne [e−/m3] as given in [29]. The former is referred to as the (electron)
frequency of plasma oscillations as a response to time varying electromagnetic fields.
In [95] the following expression 3.33 is derived, whereby several assumptions8 are
made, which approximate the conditions in the ionosphere:

fc =

√
nee2

meϵ0
(3.33)

These plasma oscillations are also called Langmuir waves (see [60] and [95] for more
details about Langmuir probes, which can be used for the determination of iono-
spheric parameters as electron density etc.). For frequencies f larger than fc, radio
or micro waves can pass the ionosphere and are affected by refraction mechanisms
as is also the case for the troposphere. In contrast to the effects that occur within
the troposphere, they are much more pronounced in the ionosphere due to large
changes of the refractive index. In the frequency spectrum below the Very High Fre-
quency (VHF) domain satisfying f ≤ fc, the waves are reflected. The propagation
behavior of electromagnetic waves is described by a dispersion relation. Its deriva-
tion for transverse electromagnetic waves can be found in [95] or [73]. In addition
to the previous assumptions about the state conditions of a ionospheric plasma, one
thereby assumes that in the limiting case the Maxwellian RMS thermal velocity of
the particles does not have a noticeable impact, so that in the limit the temperature
tends to zero. This is also known as the cold plasma condition. The dispersion
relation then states:

8One supposes a fully ionized, uniform and stationary plasma consisting of two particle species
- electrons and heavy, positive ions -, which in addition is unmagnetized and electrically neutral,
such that the number densities of the present charges are equal.
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− k2 +
ω2

c2
− ω2

c

c2
= 0 (3.34)

The phase and group refractive indices nph and ngr can be derived from formula 3.34
by using the relations for the phase vph and group vgr velocities:

nph =
c

vph
, vph =

ω

k
(3.35)

ngr =
c

vgr
, vgr =

dω

dk
(3.36)

Plugging these relations into the dispersion relation defined in 3.34 gives us:

nph =

√
1−

(
fc
f

)2

(3.37)

ngr =
1√

1−
(

fc
f

)2 (3.38)

Using the expression for the plasma frequency fc and plugging it into the first order
Taylor-expanded expressions of the functions 3.37 and 3.38 lets us rewrite nph and
ngr:

nph ≈ 1− 40.31

f 2
ne (3.39)

ngr ≈ 1 +
40.31

f 2
ne (3.40)

Similarly as stated in formula 3.24, we can now adopt a definition for the ionospheric
path delay affecting a signal along the path between a receiver and a satellite:

Isr,f

∣∣∣∣
ph,gr

=

∫
(nph,gr − 1) ds = ∓40.31

f 2

∫
neds (3.41)

where we have to integrate over the path-depending phase or group refractive in-
dices. As a conclusion, for carrier phase measurements the correction considers a
propagation path advancement, while for wideband signals as pseudo-range/code
measurements one has to correct for a propagation path lag, because the integral in
expression 3.41 depends on the sign.

A more general expression for the refractive index is given by the Appleton for-
mula discussed in [29]. In contrast to the hypotheses made above, one drops the
assumption of an unmagnetized plasma and additionally considers the magnetiza-
tion through the Earth’s magnetic field. As a basis for reflection, we follow the
considerations in [80] and give a recap on the results:
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n2
ph = 1− 2X(1−X)

2 (1−X)− Y 2
T ±

√[
Y 4
T + 4 (1−X)2 Y 2

L

] (3.42)

X =
ω2
c

ω2
, YT = −ωg

ω2
sin θ, YL = −ωg

ω
cos θ, ωg =

eB

me

(3.43)

where ωg measures the electron gyrofrequency. B specifies the Euclidian vector
norm value of the magnetic field strength and θ describes the angle between the
wave vector of the electromagnetic signal and the magnetic field vector. According
to the calculations in [80], a second order Taylor approximation of the Appleton
relation is proposed and inserted into the definition of the path delay 3.43. The
result is a third order series in the frequency f :

Isr,f

∣∣∣∣
ph

= − I1
f 2
− I2

f 3
− I3

f 4
(3.44)

The constants I are integral expressions that must be evaluated depending on the
required level of accuracy. For the purpose of demonstration, we reproduce I2:

I2 = 1.128 · 1012

∫
neB cos θds (3.45)

The first order term I1 was is already given by 3.41. Calculating the ratio of the
first two terms of the above series 3.44 using adequate values for ne and B cos θ
as well as appropriate boundaries for evaluating the integral results in a propaga-
tion delay error of about 0.1% for E1 band signals (corresponding to a frequency of
f = 1575.42MHz), which translates to a few centimeters of range error. This con-
firms the importance of higher order ionospheric effects for high-precision geodesic
applications like Precise Point Positioning (PPP). If one rejects the assumption
about the magnetic influence, the Appleton relation 3.43, after subjecting it to a
first order Taylor expansion, reduces to 3.39.

For single frequency users, it is important to correct the ionospheric path delay
by a proper model, since it amounts up to ≈ 50m depending on the frequency band
used. As stated earlier, dual-frequency observations can be exploited to almost
completely neutralize the first order ionospheric path delay 3.41 by forming linear
combinations of measurements 3.6 and 3.13, whereas the remaining error also de-
pend on the frequency combinations used. Especially for GALILEO satellite system
users, the official open service document [100] recommends the fairly new NeQuick
ionospheric model9 ([55]) to take into account the path delay. This model allows to
compute the delay on the basis of a set of regularly updated empirical parameters.
With these parameters, the electron concentration can be determined point-wise
along the path between receiver and satellite in dependence of the actual receiver’s

9Actually, the NeQuick 2 model is currently an International Telecommunication Union (ITU)
recommendation for the evaluation of wave propagation effects in the ionosphere (https://www.
itu.int/rec/R-REC-P.531/en). The latest information about the model and details about its
implementation can be found in [99].
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geographic position. Subsequently, the TECU result is then used to obtain the trans-
ionospheric path delay by evaluation of the integral 3.41. The Nequick model allows
to characterize the dynamics of the ionospheric profile, i.e. it covers time dependent
variations in thickness of the individual layers mentioned before and hence enables
to describe electron density variations, which e.g. depend on solar activity and,
not least, seasonal or monthly changes in solar radiation. Another commonly used
model for the prediction of the electron concentration and thus ionospheric path de-
lay is the Klobuchar model ([59]). For a comprehensive representation of ionospheric
physics and processes affecting the interaction with electromagnetic radiation, the
reader is referred to [57].
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3.2.4 Ambiguity Resolution

In section 2.3.2, the carrier phase ambiguity was introduced and for the accurate
orbit positioning purposes, it is necessary to solve for this term. After the receiver’s
phase-locked loop tracks the signal, it continuously counts the number of (fractional)
phase cycles. Aside from this recorded portion, the integer value N s

r,f appearing in
equation 3.2 is unknown, but stays constant over the time of a satellite pass10. We
outlined that with the loss-of-lock and re-initialization of the phase tracking, the
ambiguity inevitably changes its value. This typically results in cycle slips, which
are detectable as jumps in the phase observations. Thus, to properly resolve the
ambiguity, one must identify periods of time over which N does not change. At first
glance, equations 3.1 and 3.2 differ essentially in the phase wind-up and ambiguity
terms. This instructs to form their difference in order to isolate the ambiguity term
and analyze its temporal behavior:

Pf − λfΦf = −2IΦ,f + λfNf + ϵ (3.46)

where phase wind-up effect is neglected. It is evident that by using equation 3.46, all
the common terms that appear in the underlying equations are eliminated, except
for the ionospheric and noise terms. To get rid of the ionospheric term as well, one
typically follows a similar strategy and forms the Melbourne-Wübbena combination
arranged from differences of wide- and narrow-lane combinations:

ΦW − PN = λWNW + ϵ (3.47)

ΦW = (aWΦf1 + bWΦf2) (3.48)

PN = (cNPf1 + dNPf2) (3.49)

aW =
f1

f1 − f2
, bW = − f2

f1 − f2
(3.50)

cN =
f1

f1 + f2
, dN =

f2
f1 + f2

(3.51)

NW = N s
r,f1
−N s

r,f2
(3.52)

where the subscripts W and N denote wide-lane and narrow-lane related terms.
Constructing this equation reduces the problem to the determination of the wide-
lane ambiguity NW generated by ΦW , which corresponds to the wide-lane wavelength
λW previously introduced in equation 3.13. To see the direct relationship with NW ,
one can rewrite the expression for the ionosphere-free combination 3.13 as follows:

λNΦs
r,IF = ρsr + c

(
∆t̂r −∆t̂s

)
+ λN

(
N s

r,f1
− λW

λf2

NW

)
(3.53)

+λN∆ΦWU + ms
Φ,r,IF + ϵΦ,IF

10This is only the case if the receiver keeps track of the phase for as long as the satellite transit
lasts.
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The application of equation 3.47 offers the great advantage that jumps in the evo-
lution of NW are much more pronounced and therefore easier to find due to the
enlargement of the wavelength λW . The actual detection can be done by interval-
wise determination of statistical properties of NW like the empirical mean or the
associated RMS value. Intervals in which these properties change significantly po-
tentially contain a cycle slip candidate. Once the cycle slip location is detected and
at least one continuous time span can be isolated with the help of the statistical
wide-lane ambiguity analysis, one can start time-averaging NW over the identified
period and fixing it to the nearest integer. Therefore, the double-differenced version
of formula 3.47 is commonly used:

∇∆ΦW −∇∆PN = λW∇∆NW + ϵ (3.54)

Together with the estimation result of the (double differenced) float ambiguity term
NIF occuring in the expressions for the ionosphere-free combination 3.13 and 3.53,
it is now possible to solve for ∇∆N s

r,f1
, which follows from 3.15:

∇∆N s
r,f1

= ∇∆NIF +
λW

λ2

∇∆NW (3.55)

There are different ambiguity resolution algorithms. Probably the most famous
one is the Least-Squares Ambiguity Decorrelation Adjustment (LAMBDA) method,
which was first introduced by Teunissen, P. ([113], [114], [76]) and is based on an
integer Least-Squares approach. The reader will find a practical introduction to the
subject in [109] on page 495 ff.
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3.2.5 Phase wind-up

Another important effect, which is of electromagnetic nature and plays a role in
Precise Orbit Determination (POD) is the carrier phase wind-up effect, which applies
for circular-polarized electromagnetic signals. While the satellite coasts on its orbit
around Earth, it permanently rotates according to the special Yaw-Steering (YS)
attitude mode described in section 3.3.3.1. The satellite is thus kept slewed properly
ensuring that its solar panels are always in an optimal position to receive maximum
Sun illumination such that maximum power can be provided to the spacecraft,
while its main navigation antenna dish remains oriented in Earth direction. As a
consequence, the satellite antennas boresight direction permanently changes with
respect to the principal direction of the receiver antenna. Depending on the relative
attitude between both the satellite and the receiver antenna, the signal is shifted in
phase. From a receiver’s perspective, this phase shift is observed as a range shift
and can amount several centimeters. The carrier phase wind-up correction ∆ΦWU

can be calculated with the following expression derived in [128]

∆ΦWU = sign (ζ) arccos

(
DsDr

∥Ds∥ ∥Dr∥

)
(3.56)

where Ds and Dr define the effective dipole directions of the satellite’s transmit-
ting antenna and the receiving antenna. Formula 3.56 is valid for a crossed dipole
element, which can be also used as a simplified equivalent antenna model for the
Navigation Antenna (L-Band) (NAVANT) of the GALILEO satellites. ζ is defined
as

ζ = p (Ds ×Dr) (3.57)

In this expression, p labels the direction between transmitter and receiver. The
effective dipole directions can be computed from

Ds = e′a − p (p · e′a)− (p× e′b) (3.58)

Dr = ea − p (p · ea)− (p× eb) (3.59)

In equation 3.58 e′a and e′b specify the unit vectors of the dipole elements residing
on the satellite, where as 3.59 applies vice versa for the receiver antenna. It is
assumed that the antenna phase center coincides with the cross point of the two
dipoles. A generalization of the above mentioned phenomenon also addressing the
change in carrier phase wind-up due to reflected electromagnetic waves is discussed
in [16].
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3.3 Orbit and perturbation force modeling

Orbit modeling is a vital task that supports mission planning and concurrent or-
bit design activities in the context of space mission preparation and development
objectives. In this section, we focus on orbital perturbation modeling and in partic-
ular the modeling of NGD, which are of special interest for the evaluation of GNSS
satellite orbits. For a discussion of the major causes for radiation generated pertur-
bations, we refer to the respective literature, e.g. [68]. Satellites that orbit Earth on
the MEO are predominantly affected by SRP. The only perturbation effects that
exceed those caused by SRP are of gravitational nature like third body attractions
from the Sun and the Moon as well as the effects of lower and higher order harmonics
of the Earth’s gravity field. In order to compare different perturbations, we have
calculated the accelerations and potential radial errors for a selected collection of
perturbation sources. The reader can find the corresponding values sorted by their
contributions in the table 3.1. The respective profiles are plotted in 3.4.

Perturbation source Acceleration |⃗a|max [m/s2] Position error |r⃗|max [m]

Harmonic gravity field 0.72 ∞

Lunar # 4.50 · 10−6 5.11 · 102

Solar ⊙ 2.24 · 10−6 2.54 · 102

Solar radiation pressure 1.38 · 10−7 0.90 · 102

Thermal radiation pres-
sure

8.50 · 10−9 5.00 · 10−1

Post-Newtonian correc-
tion1

3.89 · 10−10 5.00 · 10−2

Venus � 4.65 · 10−11 5.00 · 10−3

Jupiter X 1.75 · 10−11 2.00 · 10−3

Mars2 � 9.05 · 10−14 1.00 · 10−5

1 See [105] for further information on the Post-Newtonian framework and its use in the application
of celestial mechanics. In the Appendix A.2 one finds the formula describing the relative motion in
a PPN two-body setting, which is used here to evaluate the influence of the relativistic correction.
2 Saturn Y is the second most massive planet in the solar system. Despite its greater distance, it
causes nearly the same gravitational perturbation as Mars with respect to Earth &.

Table 3.1: Perturbations as measured for GALILEO satellite GSAT0202. Orbit
errors reflect results after a simulation duration that corresponds to one orbital
revolution.

SRP depends primarily on spacecraft specific characteristics, such as the form
factor, i.e. the respective geometry and surface area as well as the surface ma-
terial composition and condition. SRP perturbations periodically vary all orbital
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elements and satellites with a poor area to mass ratio feature the highest sensitivity
to those disturbances. In particular, the attitude of the satellite and its trajectory
also play a crucial role. Satellites which are permanently Sun lit throughout the or-
bit receive a larger amount of direct solar radiation as compared to satellites, which
undergo eclipse periods. In this regard, the most notable quantity that determines
the amount of time a satellite faces direct sunlight is the Sun’s elevation above
the orbital plane, β. This angle defines the angular distance between a ray drawn
from Earth to the Sun and its corresponding projection onto the orbital plane of
a satellite (see 3.8). Finally, even the level of activity of the Sun has a small, but
rather negligible effect on the change in SRP, i.e. it undergoes small fluctuations
resulting from the eleven-year solar cycle, which amounts up to ≈ 0.08% over one
period according to [30]. In a quite recent study by de Witt et al. [33], a composite
Total Solar Irradiance (TSI) from various data sets has been estimated. Although
the process of data analysis is still not finalized, preliminary results reveal that the
TSI closely approaches the result of Frölich [42], which amounts 1361 ± 0.5W/m2.
Moreover, the seasonal change of the amount of TSI experienced by the satellite due
to the varying distance to the Sun amounts up to ≈ 7% and largely outranges the
aforementioned effect.

Figure 3.3: Data plot of the total solar irradiance covering the entire mission du-
ration of the Solar Radiation and Climate Experiment (SORCE) satellitea. Among
other investigations, the mission aimes at taking high-precision measurement data
of the total solar irradiance. One well recognizes the approximate 11-year change of
the solar activity.

ahttps://lasp.colorado.edu/home/sorce/data/tsi-data/
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3.3.1 Perturbation modeling strategy

The main forces that govern the perturbed dynamics of an Earth-bound satellite are
of gravitational nature. In 3.3, table 3.1 reveals that by far the largest contribution
is due to the Earth’s harmonic gravity field. The equation that describes the motion
of GNSS satellites sufficiently well reads:

d2r

dt2
= aGeo + aT ide + aPM + aPN + asrp + aa,IR (3.60)

aGeo Acceleration due to the Earth’s harmonic gravity field [m/s2]

aT ide Acceleration due to lunisolar Solid Earth Tides and
Ocean Tides

[m/s2]

aPM Third body perturbations due to other celestial bodies [m/s2]

aPN Acceleration related to post-Newtonian perturbations [m/s2]

asrp Solar Radiation Pressure (SRP) generated acceleration [m/s2]

aa,IR Earth albedo and IR acceleration [m/s2]

Geopotential perturbations: The Earth’s geopotential is driven by its ir-
regular mass density distribution and can be expanded into a series of spherical
harmonics:

u =
GM⊕

r

∞∑
n=0

n∑
m=0

a⊕
n

rn
(Pm

n (sin θ) (Cnm cosmϕ + Snm sinmϕ)) (3.61)

u =
GM⊕

r
+

(
Nz∑
n=2

JnP
0
n (sin θ)

rn+1

)
+

(
Nt∑
n=2

n∑
m=1

Pm
n (sin θ) (Cnm cosmϕ + Snm sinmϕ)

rn+1

)
(3.62)

u Gravitational potential [J/kg]

r Distance between center of Earth and point of interest [m]

θ Polar angle in spherical coordinates [deg]

ϕ Azimuth angle in spherical coordinates [deg]

Nz Total number of zonal components in the expansion

Nt Total number of tesseral components in the expansion

with the coefficients of degree n and order m:
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Cnm =
2− δ0m
M⊕

(n−m)!

(n + m)!

∫
sn

a⊕n
Pm
n (sin θ) (cosmϕ) ρ(s)d3s (3.63)

Snm =
2− δ0m
M⊕

(n−m)!

(n + m)!

∫
sn

a⊕n
Pm
n (sin θ) (sinmϕ) ρ(s)d3s (3.64)

where one has to integrate over the Earth’s volume d3s, which at every point
s has a density ρ(s). The coefficients Cnm, Snm and Jn are provided as data
products, for example, by the Geo Forschungs Zentrum (GFZ)11. The terms P 0

n

and Pm
n are the Legendre polynomials and associated Legendre functions, respec-

tively. Equation 3.62 makes it easier to discern between different components of
the gravity field model. Apart from the Earth monopole value represented by the
first therm, the geopotential coefficient J2 makes the largest contribution. This
shape factor resembles the effect of the Earth’s oblateness. According to the Nu-
merical Standards of the International Earth Rotation Service (IERS), a value of
J2 = 1.0826359 × 10−3 ± 1 × 10−10 is recommended. The J3 term is already three
orders of magnitude smaller. The most recent 2020 version of the Earth Gravita-
tional Model (EGM) improving the EGM2008 predecessor was planned to be pub-
lished12 by the National Geospatial-Intelligence Agency (NGA) in 2020, see [14].
The release is announced to comprise a harmonic gravity field model up to degree
(n) and order (m) 2159. Its precursor model, the experimental global gravity field
model, was published by [129], which extends to degree (n) and order (m) 5400.
The perturbing accelerations follow from constructing the gradient of the potential
3.61. For the benefit of the reader, we provide the results for the single vector
components of aGeo =

∑
n,m [ẍnm, ÿnm, z̈nm] given in [70] in an Earth-Centered

Earth-Fixed (ECEF) coordinate system:

ẍnm
m=0
=

GM⊕

a⊕2
(−Cn0Vn+1,1) (3.65)

ẍnm
m>0
=

GM⊕

2a⊕2
(−CnmVn+1,m+1 − SnmWn+1,m+1) (3.66)

+
(n−m + 2)!

(n−m)!
(CnmVn+1,m−1 + SnmWn+1,m−1) (3.67)

ÿnm
m=0
=

GM⊕

a⊕2
(−Cn0Wn+1,1) (3.68)

ÿnm
m>0
=

GM⊕

2a⊕2
(−CnmWn+1,m+1 − SnmVn+1,m+1) (3.69)

+
(n−m + 2)!

(n−m)!
(CnmWn+1,m−1 + SnmVn+1,m−1) (3.70)

z̈nm
m>0
=

GM⊕

a⊕2
((n−m + 1) (−CnmVn+1,m − SnmWn+1,m)) (3.71)

Vnm and Wnm define the following recurrence relations:

11http://isdc.gfz-potsdam.de/grace-isdc/
12https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.9884B/abstract
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Vmm = (2m− 1)
(xa⊕

r2
Vm−1,m−1 −

ya⊕
r2

Wm−1,m−1

)
(3.72)

Wmm = (2m− 1)
(xa⊕

r2
Wm−1,m−1 −

ya⊕
r2

Vm−1,m−1

)
(3.73)

Vnm =
2n− 1

n−m

za⊕
r2

Vn−1,m −
n + m− 1

n−m

a⊕
2

r2
Vn−2,m (3.74)

Wnm =
2n− 1

n−m

za⊕
r2

Wn−1,m −
n + m− 1

n−m

a⊕
2

r2
Wn−2,m (3.75)

Solid Earth Tides: The shape of the Earth is persistently subjected to tidal
forces caused by the gravitational fields of other celestial bodies, especially that of
the Sun and the Moon. These tidal forces produce permanent and periodic shape
deformations, where displacements of the Earth’s crust are called Solid Earth Tides.
The deformations are in turn responsible for corresponding variations of the Earth’s
geopotential, which is actually observed in the vicinity of the Earth. Among time-
varying deformations, tidal effects are also responsible for slight changes in orbital
precession and nutation. Another form of tide-induced perturbations are Ocean
Tides, which also generate variations in the Earth’s geopotential. Both effects are
conventionally modeled as corrections ∆Cnm and ∆Snm to the standard coefficients
3.63 and 3.64 that describe the geopotential model. According to [70], the lunisolar
Solid Earth Tides can be written as:

∆Cnm = 4kn

(
GM

GM⊕

)(a⊕
s

)n+1

√
(n + 2)(n−m)!3

(n + m)!3
Pm
n (sinϕ) cosmϕ (3.76)

∆Snm = 4kn

(
GM

GM⊕

)(a⊕
s

)n+1

√
(n + 2)(n−m)!3

(n + m)!3
Pm
n (sinϕ) cosmϕ (3.77)

M Mass of celestial body [kg]

s Distance between Earth and celestial body [m]

kn Love number of degree n

ϕ Earth-fixed latitude [deg]

λ Earth-fixed longitude [deg]

The contribution of the tides to the geopotential depend on the Love numbers. These
numbers are dimensionless parameters describing the susceptibility of the Earth’s
shape to external and Earth-related tidal effects. They thus indicate by how much
the effect of the tidal potential on the elastic Earth is greater than on a rigid Earth
body.
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Ocean Tides: The same tidal forces that cause Solid Earth Tides also lead to
a periodic redistribution of the global seawater and thus to fluctuations of seawater
levels. Depending on the phase and amplitude of the rise and fall of the seawater
level, the Earth’s gravity field reacts with a corresponding time-varying change.
Ocean Tides can be modeled as ([34], [70], [112] gives in particular expressions
for temporal deviations of the second degree coefficients, which have the biggest
impact):

∆Cnm =
4πGa⊕

2ρw(1 + k′
n)

GM⊕(2n + 1)

∑
f(n,m)

(C+
fnm + C−

fnm)cos (θf ) + (S+
fnm + S−

fnm)sin (θf ))

(3.78)

∆Snm =
4πGa⊕

2ρw(1 + k′
n)

GM⊕(2n + 1)

∑
f(n,m)

(C+
fnm − C−

fnm)cos (θf )− (S+
fnm − S−

fnm)sin (θf ))

(3.79)

ρw Seawater density [kg/m3]

k′
n Ocean load deformation factors

C±
fnm, S

±
fnm Ocean Tide coefficients/amplitudes of tide constituent

frequency f
[m]

θf Weighted sum of six Doodson variables/Tide constant of
tide constituent frequency f

The signs in the superscripts of C±
fnm and S±

fnm represent prograde and retrograde
wave amplitudes associated with frequency f and degree and order n and m. The
six Doodson numbers encode the tidal harmonic components (e.g. short-term and
long-term) and are associated with the six fundamental Doodson arguments specified
in [65]. They enable to develop the tide-generating potential in dependence of the
Sun’s and Moon’s orbits. The methodology goes back to Arthur Thomas Doodson,
see [32]. Finally, the tide-induced acceleration aT ide can be computed by using the
formulas 3.65 to 3.71.

Point-mass perturbations: The prediction of satellite orbital perturbations
aPM due to other celestial bodies regarded as point-masses can be achieved with:

aPM = −GM⊕

(
r− s

|r− s|3
+

s

|s|3

)
(3.80)

where r and s are the geocentric position vectors of the satellite and the point-mass
of another celestial body with respect to the J200013 ECI reference frame realisation.

13This is an inertial reference frame in which the equations of motion for the solar system may
be integrated. This reference frame is specified by the orientation of the Earth’s mean equator and
equinox at a particular epoch - the J2000 epoch. This epoch is Greenwich noon on January 1, 2000
Barycentric Dynamical Time (TDB) (source: https://naif.jpl.nasa.gov/pub/naif/toolkit_
docs/FORTRAN/req/time.html)
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As a basis for the computation of the celestial body positions involved in perturba-
tion modeling, the JPL Planetary and Lunar Ephemerides14 database is used. It
contains coefficients of Chebyshev polynomial fits to the Cartesian planetary posi-
tions in the International Celestial Reference Frame (ICRF), which slightly deviates
from the J2000 reference frame. The Chebyshev polynomials are related to the TDB
scale.

Relativistic orbital perturbations: The magnitude of the relativistic post-
Newtonian correction aPN that play a role in the satellite’s equations of motion is
referenced in table 3.1. The equations of motion for a satellite on its trajectory is
given by the geodesic equation:

dxµ

dτ
= Γµ

νσ

dxν

dτ

dxσ

dτ
(3.81)

where τ in equation 3.81 is to be interpreted as the reading of a clock. For a
point mass describing e.g. a satellite, the parameter represents proper time. The
Christoffel symbols Γ are given in [83] on page 375 and are based on a space-time
metric expansion of 1PN order, which can be used to describe a post-Newtonian
system under the conditions of slow motion and weakly curved space-time:

g00 = −1 +
2

c2
U +

2

c4
(
Ψ− U2

)
+ O(c−6) (3.82)

g0j = − 4

c3
Uj + O(c−5) (3.83)

gjk = δjk

(
1 +

2

c2
U

)
+ O(c−4) (3.84)

where U and Ψ are the near zone potentials, which are listed in [83] on page 358
and give rise to the metric components gµν . The subscript for the potential U in
3.83 denotes its partial derivative with respect to the jth coordinate. The general
notation follows the conventions established by the author. Through the use of
the above mentioned Christoffel symbols, an equation for the desired description of
post-Newtonian motion aPN can be found (see [105]):

dv

dt
= −GM⊕

r3
r +

GM⊕

c2

(
2(β + γ)

GM⊕

r4
r− v2

r3
r + 2(γ + 1)

r · v
r3

v

)
(3.85)

v Euclidian vector norm of the velocity [m/s]

β Curvature parameter (equal to 1 in General Relativity)

γ Non-linearity parameter (equal to 1 in General Relativ-
ity)

14https://ssd.jpl.nasa.gov/ftp/eph/planets/bsp/
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The second term in brackets in formula 3.85 can be finally identified as the perturb-
ing acceleration aPN in equation 3.60.

Earth albedo and Earth infrared radiation: In addition to SRP, we would
like to mention other NGD sources for completeness, although they play a rather
minor role for a perturbation analysis for satellites located on a MEO: Earth albedo
and earth infrared radiation, which act in the same way as SRP. The former consid-
ers essentially the fraction of sunlight reflected from the Earth’s surface described by
the albedo factor α. In principle, albedo covers the same optical spectrum as the ra-
diation responsible for SRP, but its intensity generally depends on the wavelength of
the sunlight reflected from the Earth and can be specified for ranges of wavelengths.
The average albedo value is approximately 0.34, which is equivalent to an average
surface flux of αP⊙ ≈463W/m2. In contrast, the Earth’s infrared radiation depends
on the Earth’s specific thermal re-emission pattern and encompasses a longer wave-
length spectrum than albedo, averaging about ≈230W/m2. According to [71], the
total effect caused by both phenomena is two orders of magnitude smaller than the
perturbations caused by SRP. Both effects can be modelled as:

aa,IR =
∑
j

(caαIa cos θj,E + cIRIIR)

(
As

c m

Aj

πr2j
cos θj,s rj

)
(3.86)

ca, cIR Earth albedo and infrared coefficients

Ia, IIR Radiation flux radiated from Earth [W/m2]

α Albedo factor

Aj Earth’s jth surface element with unit surface normal vec-
tor nj

[m2]

θj,E Angle between nj and surface-Sun vector [deg]

θj,s Angle between nj and surface-satellite vector [deg]

rj Unit vector from Aj to satellite and according distance
rj

[m]

m Satellite’s mass [kg]

Equation 3.86 assumes that the Earth’s surface is divided into a number of area
elements Aj. The considerations become more complicated if one also makes a
geometric differentiation for the satellite: For any relative orientation of surface el-
ements Aj and surfaces Ai describing the distinct shape of the satellite, we would
obtain additional visibility factors describing the intensity of radiative exchange due
to the geometry of any conceivable configuration. By analogy, in section 4.2.1.2, we
calculate such visibility factors describing the radiative coupling between individual
surfaces within a satellite in the context of a thermal analysis, see also equation 4.47.
For simplicity, we have introduced a surface measure As for the satellite, which re-
mains constant for all times. For consistency, we also neglect these additional NGD
sources in section 4.2.1.2.

Chapter 3 53



Test of General Relativity with GALILEO Satellites

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

0.3

0.4

0.5

0.6

0.7

0.8

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

1

1.5

2

2.5 10-6

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

2

3

4

5 10-6

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

2

3

4

5 10-11

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

4

6

8

10 10-14

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

0.8

1

1.2

1.4

1.6

10-11

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

1.15

1.2

1.25

1.3

1.35

1.4 10-7

00:00 06:00 12:00 18:00 00:00
Feb 11, 2017   

1.5

2

2.5

3

3.5

4 10-10

Figure 3.4: Comparison of various selected perturbation series computed through
the use of an orbit simulation for GSAT0202. The figures show the 2-norm values
of the underlying acceleration vectors. The maximum values of the time series are
listed in table 3.1.
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3.3.2 Advances in SRP modeling

There have been major advances in the modeling of radiation pressure effects in
the last decades targeting at a better understanding of the impact on GNSS orbits.
For the GPS system, the so-called ROCK models were introduced in the first half
of the 1990s by Fliegel et al. [41] [40] to cover perturbations as solar and thermal
radiation pressure effects. Before that time, no steps were taken to investigate these
effects analytically, instead sticking to the strategy of deriving statistical parameters
directly from orbit estimation. For the Block I, Block II and Block IIa satellites,
various a-priori model candidates were first formulated by Fliegel et el. [41] and the
model predictions were tested against pseudo-range tracking data. At a later time,
already before the Block IIR GPS satellite generation became operational a model
redesign was proposed in [40]. The ROCK models basically represent the GPS satel-
lites as a collection of geometrical primitives like flat surfaces or cylindrical bodies
with sets of optical material properties assigned. With these a-priori features, they
can rather adequately reflect their geometrical composition. The computation of the
perturbation forces are carried out in a satellite-fixed coordinate system, in which
the positive Z-direction points nadir, the positive Y-axis is directed along the solar
panel pivot axis and the X-direction completes the right-handed coordinate system,
such that radiation pressure effects are confined to the X, Z -faces. In order to
increase the accuracy, it has been recommended to augment the ROCK models by
further estimation of two parameters. One for the absorption of the Y-bias, act-
ing in the directions of the solar panel axes, and another additional scale term.
With these additional parameters, the ROCK models represented a suitable choice
for pseudo-range-based orbit estimation procedures. However, model results have
demonstrated that it is insufficient for high-precision geodetic applications requiring
centimeter accuracy.

At a later time, a new empirical SRP model, the Empirical CODE Orbit Model
(ECOM) was proposed by Beutler et al. in [15] and it essentially decomposes the
radiation induced accelerations in a body-fixed system (DYB-system) that is both
Sun- and solar panel axis-aligned. This approach was based on the assumption that
the effects of SRP can be better isolated in this axis system, thus simplifying the
physical interpretation of the empirical parameters. This in turn was inspired by
the model employed by Colombo et al. [26], which was designed to mainly capture
resonant effects from orbital perturbations caused by the Earth’s gravity field. Un-
like the Sun-aligned ECOM frame, the Colombo model instead expediently refers to
an axis system aligned in radial direction. The ECOM coordinate system is defined
such that the D-axis points from the satellite towards the Sun, the Y-axis is aligned
with one of the satellite’s solar panel axes, following the convention of the ROCK
models, and the B-axis completes the right-handed coordinate system. Following
that definition, the specific DYB-system can be constructed as follows:

eD = e⊙

eY = ey

eB = e⊙ × ey

(3.87)

For a better view on the orbit configuration, the typical spacecraft’s attitude and its
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corresponding axis orientation, see 3.8. Within this Sun-aligned coordinate system,
the empirical accelerations for each of the directions given in 3.87 are modeled by first
order Fourier series with a set of three coefficients {D0, Dc, Ds, Y0, Yc, Ys, B0, Bc, Bs}.
Thereby, the periodic terms are functions of the orbit angle with respect to the space-
craft’s latitude, u, which describes the angular distance of the satellite with respect
to its ascending node:

aD = D0 + Dccos(u) + Ds sin(u)

aY = Y0 + Yccos(u) + Ys sin(u)

aB = B0 + Bccos(u) + Bs sin(u)

(3.88)

The use of this purely empirical model is still common practice and especially its
reduced form with five parameters including all constant terms and the once-per-
revolution Bc and Bs -terms to treat SRP induced perturbed satellite motion for
the purpose of orbit determination. Originally, this model was used as an extension
to the a-priori ROCK models, and it was shown by Beutler et al. [15] that by using
this semi-empirical approach the predictions of SRP effects for the GPS satellites
could be significantly improved.

Springer et al. [108] started a dedicated research to determine an optimal parame-
terization for the ECOM for accurate orbit estimation of the GPS satellites. The key
reason for the study involved model shortcomings encountered in orbit estimation
tests with different parameter configurations. Parameter tests were then performed
based on multiple-day orbit estimates in which the respective coefficients of the
three ECOM parameter sets were varied for the constant and periodic terms. A
comprehensive study of various SRP parameterizations based on two different orbit
estimation approaches15 ultimately revealed an optimal set of six acceleration pa-
rameters {D, Y, B, Z1, X1, X3} for the description of SRP induced perturbations
(asrp):

asrp = D · eD + Y · eY + B · eB
+ Z1 sin (u− u0) · eZ + (X1 sin (u− u0) + X3 sin (u− u0)) · eX (3.89)

Equation 3.89 includes three constant ECOM terms for the DYB-accelerations and
two additional terms accounting for first and third order harmonics in the eX and
eZ-axis defining the spacecraft body-fixed system16, where the harmonic functions
depend on the spacecraft’s latitude u17 with respect to the Sun’s latitude in the
orbital plane u0.

15On the one hand, a rather conventional orbit estimation procedure based on GPS observations
was used and the results were compared to estimations based on fits to precise SP3 orbital data.
The details of the procedure are documented by Springer et al. in [107]

16The Z -axis points in radial direction and the X -axis is perpendicular to the plane spanned
by the Y and the Z -axes.

17The spacecraft’s argument of latitude is the sum of the argument of perigee and the true
anomaly.
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The successful search for an optimal parameterization was followed by a five-day
orbit fit study based on precise SP3 orbital data of the Center for Orbit Determi-
nation in Europe (CODE) covering a time span of 5.5 years in an attempt to find
a universal a-priori model that would meet the requirements of long-time orbital
perturbation analyses. As a result, the following sets of expressions were obtained
for the Block II and Block IIa GPS satellites:

D(β0) = D0 + DC2 cos (2β0) + DC4 cos (4β0)

Y (β0) = Y0 + YC cos (2β0)

B(β0) = B0 + BC cos (2β0) (3.90)

Z1(β0) = Z0 + ZC2 cos (2β0) + ZS2 sin (2β0) + ZC4 cos (4β0) + ZS4 cos (4β0)

X1(β0) = X10 + X1C cos (2β0) + X1S cos (2β0)

X3(β0) = X30 + X3C cos (2β0) + X3S sin (2β0)

which redefines the six harmonic coefficients appearing in equation 3.89 as a function
of harmonic series of the Sun’s elevation above the orbital plane β, which is shown
in 3.8. The insertion 3.90 into 3.89 then brings the final new CODE SRP model.
The accompanying eighteen series coefficients in equation 3.90 can be found in [108].

In the end of 2014, Montenbruck et al. [71] published a new SRP model for
the GALILEO In-Orbit Validation (IOV) satellites. This work was motivated by
the appearance of deficiencies in the respective orbit solutions as became evident
from long-term Satellite Laser Ranging (SLR) residual analysis. To overcome this
problem, a semi-empirical SRP model was developed. This combines satellite-
taylored a-priori box model information with the a five-parameter ECOM model
{D0, Y0, B0, Bc, Bs}. For the a-priori box model, six additional parameters were
introduced

{
aαδC , aαδS , aαδA , aρC , aρS, aρA

}
that account for the particular shape of the

satellite and its deviation from an ideal box model. These parameters are composed
of combinations of characteristic SRP accelerations that isolate the effect of the
satellite’s individual {+Z, −Z, +X} surfaces. The subscripts C, S and A denote
the single contributions of the satellite’s cubic, stretched and anti-symmetric geo-
metrical shape, the superscripts indicate the type of radiation exchange with the
satellite’s surfaces (α and δ declare absorption and diffuse reflection and ρ denotes
specular reflection. The orbit solutions show that the additional a-priori model
helps to notably reduce radial orbit errors, as is confirmed by the SLR residuals as
well as the satellite clock residuals in comparison to the results computed with a
pure ECOM model. The study demonstrates that some empirical parameters are
highly sensitive to changes in a-priori parameters that quantify the cubic shape and
cuboidness of the satellite (aC and aS), which underpins the relevance of proper geo-
metrical modeling, whereby it was found that there is no pronounced dependence on
parameters that determine the asymmetry of the spacecraft (aA). The shape of the
GALILEO IOV satellites is strongly related to that of the FOC satellites, see figure
3.5. However, it has to be noted that in contrast to the IOV satellites, the surfaces
of the FOC satellites have different material characteristics. This could especially
affect the outcome of the ECOM parameter estimation results related to changes in
the aA parameters absorbing the +Z, −Z -face asymmetry. Moreover, the missing
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correlation of harmonics of the B parameter and the new a-priori parameters could
reflect further modeling deficiencies not captured by the adopted approach.

In 2015, Arnold et al. [9] reissued the ECOM to fill the performance gaps that
resulted primarily from the increasing deployment of the Globalnaja nawigazion-
naja sputnikowaja sistema (GLONASS) constellation. In an extensive long-term
study, GPS and GLONASS observations were used, to also determine geodetic per-
formance indicators such as the quality of the geocenter z-coordinates or Earth
rotation parameter solutions. The orbit model for each satellites was equipped with
a five-parameter ECOM. In particular, the GLONASS solutions gave poor results
compared to GPS as well as combined solutions. The study suggests the following,
more universal model for the absorption of radiation-induced perturbations, also
referred to as the extended ECOM or ECOM2 model:

D (u) = D0 +

nD∑
n=1

Dc,2n cos (2n∆u) + Ds,2n sin (2n∆u) (3.91)

Y (u) = Y0 (3.92)

B (u) = B0 +

nB∑
n=1

Bc,2n−1 cos ((2n− 1)∆u) + Bs,2n−1 sin ((2n− 1)∆u) (3.93)

where ∆u was already defined in equation 3.89. The upper bounds nD and nB of the
sums are user-defined and must be carefully chosen depending on the application.
The five-parameter ECOM is basically a reduced realization of the above formula-
tion with nD = 0 and nB = 1, which we henceforth refer to as ECOM1. For small
changes in β0, [9] suggests also that the coefficients of the series 3.93 can be written

Figure 3.5: Artificial representation of the GALILEO satellitesa. There are differ-
ent reference coordinate systems shown in these pictures. The red one specifies the
manufacturer-specific axis system, whereas the blue-labeled one indicates the coor-
dinate system as adopted by the IGS. In this thesis, the description of any satellite
body-fixed related effects are described in the last-mentioned coordinate system, if
not otherwise stated.

ahttps://www.igs.org/mgex/constellations/
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in dependence of the Sun’s latitude and the Bc and Bs coefficients of the ECOM1.
The study implies that although the ECOM1 is still sufficient for high-precision
applications such as geodetic surveys, the ECOM2 is especially a good substitute
to also establish compatibility with the GLONASS system. Prange et al. later also
showed that the ECOM2 can be even a beneficial candidate model for the improve-
ment of GALILEO and Quasi-Zenith Satellite System (QZSS) orbit solutions.

A ray-tracing approach based on a medium-fidelity Computer-Aided Design (CAD)
model was developed out by Darugna et al. [28] to improve the orbit determina-
tion results for the QZSS based on observation data covering a two-year period from
2015 to 2016. Four solutions were compared, calculated using different models: Two
purely empirical models with two different ECOM parametrizations and two a-priori
models, one box-wing realization and the ray-tracing model. It was shown that the
employment of an a-priori model significantly reduces the parameter estimation ef-
fort. Thus, in this respect, all ECOM parameters could be reduced using the a priori
models. As an independent test, SLR residuals were used as a measure for the accu-
racy of the orbit solutions. The according analysis gave evidence that the ray-tracing
model performed best, showing the smallest SLR residuals, when the satellite is in
YS mode. However, the box-wing a-priori model showed better results, when the
satellite is in Orbit-Normal (ON) mode. The ray-tracing model implications gave
reason that this effect emerged owing to thermal radiation mismodeling such that
improvements are expected to be achieved with more detailed knowledge about the
thermal control system as well as more information about small scale structures and
optical material properties of the satellite.

The European GNSS Service Centre first published the GALILEO metadata during
2016 and updated it in the first half of 2019. These contain physical and technical
information on the GALILEO IOV and FOC generations that are of particular inter-
est for PPP and POD applications. These include the special spacecrafts’ attitude
control laws, geometrical and physical properties such as the dimensions and mass
as well as center of mass of the satellites. There are also lists of optical material
properties among the information describing the average absorption and reflection
behavior of the outer surfaces of a simplified box-wing satellite substitute model,
which especially serves the purpose of more advanced radiation pressure studies.

Bury et al. [20] used the official GALILEO metadata for a comparative study,
focusing primarily on testing the performance of the specified box-wing model un-
der consideration of different ECOM1 and ECOM2 parameter configurations. 200
days of tracking data from 2017 from over 100 GNSS ground stations were used as a
data basis. Using the different parameter configurations, orbit solutions were calcu-
lated and compared based on their SLR residuals. Semi-empirical models endowed
with a box-wing model with generally fewer ECOM parameters were found to pro-
duce better results than purely empirical models or even the stand-alone box-wing
model. The best performance was obtained by a three-parameter semi-empirical
model using only the constant terms from the five-parameter set also analyzed in
[71].

Sidirov et al. [104] introduced an a-priori model that accounts for Thermal Ra-
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diation Pressure (TRP) effects emanating from the thermal radiators mounted on
the −X -face by also using the official GALILEO metadata. In addition, the orbit
model was equipped with an extended ECOM2 parameter model to more effectively
describe the TRP-related effects, especially during eclipse phases. Besides once-per-
revolution harmonic terms acting in D -direction needed for low Sun elevations β,
the ECOM2 should also absorb the thermally induced effects generated by the ra-
diators installed at the ±Y surfaces. Using this model, it was shown that improved
orbit and clock solutions could be obtained, and after an independent evaluation via
SLR measurements, a 14% reduction in SLR residuals was also observed.

The advances that have been made in the field of NGD modeling in recent years have
shown that the performance of GNSS systems has been tremendously enhanced for
the benefit of a wide range of applications. These include improvements in geodetic
datums, accurate studies of geodynamic processes, and other Earth science contri-
butions, as well as support for fundamental physics studies. A distinction is made
between different types of SRP models that have been retrospectively proven to per-
form well. Empirical models such as the ECOM1 or ECOM2, semi-empirical models
that are additionally equipped with an analytical model, such as a geometrical box-
wing model. Finally, the trend is towards finer resolutions of geometrical structures
to account for the most real mapping of the satellite.
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3.3.3 Solar radiation pressure

Solar Radiation Pressure (SRP) is caused by the interaction of photons from the
Sun with a satellite’s surface. During the process of interaction, photons exchange
momentum with the target surface resulting in a phenomenon we call SRP. From
the definition of proper time and the definition of the four-momentum pµ, see [79],
one can deduce the following relativistic momentum normalization condition:

ηµνp
µpν = m2ηµνu

µuν = −m2c2 (3.94)

⇔ E =

√
m2c4 + |p|2c2 (3.95)

where we adopted the index notation from equation 1.2. Since photons have zero
rest mass (m = 0), the above expression 3.95 reduces to:

E = |p|c (3.96)

Computing the time derivative of 3.96, we get an expression for the SRP :

dE

cdt
=

d|p|
dt

(3.97)

⇔ P⊙

c
= Psrp (3.98)

where P⊙ is the solar constant at a distance of AU from the Sun and Psrp is the
corresponding solar radiation pressure. The equation for the associated acceleration
asrp appearing in 3.60, perturbing the satellite’s motion is stated as follows:

asrp = −η
(
Csrp

P⊙

c

AS

mS

1AU2

|s|2
s

|s|

)
(3.99)

The solar flux amount, P⊙, follows a nearly 11 year activity cycle that depends
on the number of solar spots, see figure 3.3. It also depends on the distance from
the satellite to the Sun |s| = |r⊙ − r| (measured in scales of 1AU), and for Earth-
bound satellites it varies between approximately ≈ 1418W/m2 at perhelion and
≈ 1326W/m2 at aphelion. Among the solar flux, the SRP-related force acting on
a satellite heavily depends on the actual surface area to mass ratio AS/mS, which
is sensitive to the orientation of the spacecraft at a certain epoch. Moreover one
has to consider eclipse conditions throughout periods in which the satellite is either
totally or just partially obscured by the Earth or the Moon. This is also reflected by
the scale factor η which takes values between 0 and 1. Finally, a conventional form
factor CSRP enteres the equation, which usually has to be determined statistically
as an empirical form factor for a particular satellite.
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The combination of both an analytical treatment as given per 3.99 and additional
empirical information absorbed via 3.88 finally gives us:

asrp,DY B = −η
(
Csrp

P⊙

c

AS

mS

1AU2

|s|2
s

|s|

) ∣∣∣∣
DY B

+


D0 Dc Ds

Y0 Yc Ys

B0 Bc Bs




1

cos(µ)

sin(µ)

 (3.100)

Depending on the choice of the reference coordinate system in which the acceleration
asrp is actually to be expressed, the terms in the formula 3.100 must be transformed
accordingly. The subscript DY B indicates that the description refers to the DYB-
coordinate system defined in 3.87.

As discussed above, instead of estimating only one scaling parameter Csrp, one
conventionally determines additional sets of empirical acceleration parameters for
each of the directions in the DYB-coordinate system to increase the SRP model
accuracy. Note that we introduced the orbit angle µ in the above equation 3.100 as
also proposed in [71] instead of u as in written in equation 3.89. The figure in 3.8
illustrates the µ angle. In general, one can adjust the complexity of the describing
Fourier expansion in a user-defined coordinate system as needed:

aX (µ) = X0 +

nX∑
n=1

Xc,n cos (nµ) + Xs,n sin (nµ) (3.101)

which has a similar form as the ECOM2 model presented in equations 3.91 to 3.93,
if one refers to the DYB-coordinate frame. In this way, depending on the number
of parameters {X0, Xc,n, Xs,n} for each direction X, one can progressively enhance
the level of detail concerning the mapping of the satellite’s real geometry. Thus, it is
possible to determine customized SRP models for specific types of GNSS-satellites.
Depending on the choice of the specific coordinate system, SRP effects can be inves-
tigated for their directional properties. Once a coordinate system has been chosen,
the parameterization can be used to study a variety of causes that may account
for SRP perturbations. However, for pure modeling of SRP, the empirical mod-
eling strategy 3.101 might prove to be insufficient because no distinction by cause
is possible. Effects as the Y-bias18 which originate mainly from TRP effects, are
inevitably absorbed by the decomposition 3.101, rendering it difficult to distinguish
between different types of radiation pressure (or other) effects. Accurate radiation
pressure analyses can therefore only be performed a-posteriori. If aX (µ) describes
the ECOM2 in the DYB-coordinate system and the satellite is perfectly symmetric,
it is expected that due to the symmetry of the description all asymmetric functions
can be omitted. Of course, this is only valid under the condition that the attitude
is perfect (see also [9]), which will be discussed in more detail for the GALILEO
satellites in the next section.

18The GALILEO satellites have space radiators of different size at the bus panels perpendicular
to the Y-axis (see pictures 3.5). This leads to a heat power imbalance between both sides and thus
different thermal radiation pressure induced forces.
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3.3.3.1 Satellite attitude

In preparation to orbit simulations, it is important to clarify the attitude settings
of the GALILEO satellites, since the satellite’s orientation predefines the illumina-
tion and thus shadowing pattern, which has a profound influence on the amount
of SRP generated forces. The effect of attitude on self-shadowing behavior is par-
ticularly more pronounced for SRP models with some level of surface complexity
and is rather unimportant for simplified satellite models (like a box-wing model).
However, in any case, the satellite’s attitude at any given time also determines the
instantaneous Solar incidence angle and therefore the cross sectional area relative
to the Sun. A typical control mode under which GNSS satellites operate is the YS
control mode and for further considerations we assume that the GALILEO satel-
lites do not deviate from this nominal attitude mode at any time. The nominal YS
attitude control law satisfies two constraints. It ensures that the satellite’s main
antenna dishes always point nadir while the solar panel axis keeps perpendicular to
the satellite-Sun direction during flight, so that the solar generator always faces the
Sun and gains maximum power output during flight. These two attitude constraints
lead to a continuous rotation of the spacecraft about its pointing axis.

In accordance with the definition from 3.5, the construction of the body-fixed sys-
tem of the spacecraft is done as follows (see also figure 3.6 for illustration of the axis
system):

ez =
rS
|rS|

ey =
ez × e⊙
|ez × e⊙|

ex = ey × ez

(3.102)

For the following considerations, it is assumed that the rotation of the solar
panels equals 0◦ when the surface normals face in the direction of the ez axis of
the spacecraft. At local midnight, when the satellite is farthest from the Sun, the
ey-axis is aligned in flight direction, while the panels are turned by an angle of β
about this axis, which is identical to the Sun’s elevation. At the same time, the
spacecraft body is oriented such that the ez-direction points nadir. After a quarter
revolution about the Earth, the solar panels have continuously rotated by another
90◦ − β, so as to compensate for the advance in orbital revolution. Thereby, the
spacecraft body has yawed by a rotation angle of β around the ez-axis. This ensures
that the Sun direction stays perpendicular with respect to the solar panels. At local
noon, the solar panels have undergone a rotation of 180◦ − β around the ey-axis in
total since local midnight, while the spacecraft body finds itself in the same attitude
as half an orbital revolution before. The following table 3.2 clarifies the different
attitude phases over one orbital revolution. Note, that the initial configuration of
the satellite is supposed to characterize the situation at local midnight:
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Orbit angle µ Body ez-axis rotation Solar Panel ey-axis rotation

0◦ 0◦ β

90◦ 90◦ − β 90◦

180◦ 0◦ 180◦ − β

270◦ −90◦ + β 90◦

Table 3.2: Satellite attitude phases throughout an orbital revolution.

Figure 3.6: Attitude of the GALILEO satellites at different phases throughout the
orbit as viewed from the Sun. Beginning from the upper left picture and following
in clockwise direction, the pictures show the satellite’s orientation with respect to
the Sun for µ ∈ {0◦, 90◦, 180◦, 270◦}. The definition of the coordinate system is
in alignment with the IGS convention (see 3.5)
.
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where ez is the nadir axis which can be directly computed from the satellite’s po-
sition vector rS, ey describes the solar panel axis and ex completes the right-handed
axis system. The spacecraft is thus yawing continuously (compare table 3.2 and
figure 3.6) about the ez axis, while the surface areas of the satellite which are per-
pendicular to the eY direction are never illuminated. The β angle mentioned above
is the angle between the vector from Earth towards the Sun and the corresponding
projection of that vector onto the satellite’s orbital plane. It can be computed by
the following formula:

β = arcsin (cos Ω⊙ sin Ωsat sin isat − sin Ω⊙ cos ϵ⊙ cos Ωsat sin isat + sin Ω⊙ sin ϵ⊙ cos isat)
(3.103)

Equation 3.103 results from using the dot product of both the vector pointing from
the satellite to the Sun and the satellite’s orbit normal unit vector. For further
considerations, we express these vectors with respect to the ECI coordinate system.
In a first step, the Sun vector sECI can be found by a rotation Rz (Ω⊙) of the
celestial x-axis about the corresponding z-axis by the Suns right ascension Ω⊙ and a
subsequent rotation Rx (ϵ⊙) about the new x-axis by the Sun’s declincation ϵ⊙. In
a similar way, the orbit normal vector nECI can be constructed. Therefore, we first
perform a rotation Rz (Ωsat) of the z-axis by the right ascension Ωsat and finally a
rotation Rx (isat) about the celestial x-axis by the inclination isat is performed to
adjust for the latitudinal alignment of the normal vector with respect to the ECI
system:

s =


cos Ω⊙ − sin Ω⊙ 0

sin Ω⊙ cos Ω⊙ 0

0 0 1




1 0 0

0 cos ϵ⊙ − sin ϵ⊙

0 sin ϵ⊙ cos ϵ⊙

 ex,ECI (3.104)

n =


cos Ωsat − sin Ωsat 0

sin Ωsat cos Ωsat 0

0 0 1




1 0 0

0 cos isat − sin isat

0 sin isat cos isat

 ez,ECI (3.105)

Since β is defined with respect to the orbital plane, we have to compute s · n =
cos
(
π
2
− β

)
, leaving us with the expression s ·n = sin (β) from which equation 3.103

follows.
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Figure 3.7: Illustration of the exterior structure of a GALILEO satellite unit.

Figure 3.8: Scene of a GALILEO satellite orbiting the Earth in the YS control mode.
The orbit has an eccentricity of 0.162a, therefore its ellipticity is overdrawn in the
scene for the sake of clarity. The three angles β, ϵ and µ in this order represent the
angle between a line drawn from Earth to the Sun and its corresponding projection
onto the orbital plane (β), the angle between a line connecting the satellite and the
Earth and a line directed from the satellite to the Sun (ϵ) and finally a measurement
µ, which amounts the angular distance between the orbital midnight point with
respect to Earth and the satellite’s radius beam. Note that β keeps actually constant
throughout an orbital revolution. The bigger it is, the more the satellite is to exposed
the Sun. If the β angle is small enough, the satellite experience eclipse periods.

ahttps://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters
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3.3.3.2 FE model design

The GALILEO satellites are equipped with large bus system components as solar
panels as shown by the illustration 3.7, responsible for the largest proportion of
SRP-related perturbations. Payload components and various subsystem modules
attached to the satellite body (see image 3.9) contribute to a significant portion of
the satellite’s total surface area, and depending on their location on the satellite,
they generate considerable self-shadowing effects. In particular, these components
are also mainly responsible for the specific geometrical asymmetry of the satellite,
which is primarily related to the ±Z surfaces. As a result, solar illumination leads to
a more complex perturbation profile as a function of the satellite’s orientation and
thus attitude, which is discussed in 3.3.3.1. In anticipation of this, we refer to figure
3.22b, which shows a typical acceleration profile under given illumination conditions
3.22a. The possible self-shadowing pattern can be thought of as cross sectional
projections of those satellite components installed on the respective satellite face,
whereby the projection direction corresponds to the solar irradiance direction. Due
to the asymmetric shape of the satellite, the total set of possible projection patterns
is highly dependent on the satellite face under consideration and is relatively large
for the +Z -face. Therefore, the satellite’s response to SRP-related perturbations is
also expected to vary accordingly over the period of an orbit. In light of the study
[71], this motivates to carefully model the asymmetry of the satellite in view of its
possible influence on SRP. Since correct modeling of SRP effects obviously requires
detailed knowledge of the satellite’s shape, it is favorable to choose a modeling ap-
proach that enables to incorporate high fidelity design and structural information,
which is consistent with the current SRP modeling paradigm, especially for the
GALILEO satellites. To cope with that requirement we introduce a Finite Element
Model (FEM) consisting of surface elements.

Figure 3.9: Artificial representation of the GALILEO satellite with all its payload
and subsystem components attached.
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This section is structured such that it guides step-wise through the Finite Ele-
ment (FE) modeling approach used to obtain a high-fidelity SRP model. The FE
model is created in ANSYS Parametric Design Language (APDL).

At a first stage, a full parametric Geometric-Mathematical Model (GMM) is built.
The dimensions of the satellite’s cubage as well as its outer dimensions in a deployed
state with the solar panels unfolded could be directly taken from official sources19.
The dimensions of other exterior components as antenna payloads could then be de-
rived from dimensionless engineering drawings using a scaling approach. However,
for some components as the laser retro-reflector array, official data in the form of geo-
metrical specifications are also available20. After the surface geometry is built, single
exterior assemblies as payload components are pre-meshed to ensure that the mesh
fulfills particular requirements in preparation for the final surface meshing procedure.
In contrast to automated mesh generation techniques, the APDL mapped meshing
approach is used that allows to take over full control of the mesh topology genera-
tion process to receive a customized mesh. However, the use of this approach is tied
to the requirement that each area must be either triangular or quadrilateral, which
generally involves high modeling efforts. After the pre-mesh is generated, material
properties are assigned to each satellite component, and finally the model is meshed
with 4-node SURF152 elements and exported in preparation for orbit simulations.
For the export we use the interface methods defined by the software HPS (Hybrid
Simulation Platform for Space Systems). The HPS is a MATLAB/Simulink-based
library of simulation models and tools for the simulation of space GNC systems
and consists of more than 90 interconnected modules, which are steadily used and
improved throughout the dlr (DLR) and Zentrum für angewandte Raumfahrttech-
nologie und Mikrogravitationsforschung (ZARM) projects ([97], [63]).

19A description of the system parameters and key features can be found on:https:
//www.ohb-system.de/files/images/mediathek/downloads/190603_OHB-System_Galileo_

FOC-Satellites_2019-05.pdf
20An official inquiry for the pre-launch parameters that define the characteristics and position of

the laser retro-reflector array on the GALILEO was made: https://ilrs.gsfc.nasa.gov/docs/
2014/GAL201-GAL202_ILRS_SLR_MissionSupportRequestForm_RRAInfo.pdf. The knowledge of
the three-dimensional position of the reflector helped to support laser ranging activities and the
resulting measurements allowed to increase the orbit analysis accuracy.
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(a) (b) (c)

Figure 3.10: Different modeling stages. Based on the real satellites geometry (3.10a),
a parametric GMM of the satellite’s body is created (3.10b). Subsequently, this
surface model is meshed (3.10c). Note that figure 3.10a shows the real satellite with
the solar panels folded.

As can be observed from figure 3.9 and 3.10 most of the subsystem components
are located on the +Z -face of the satellite. Although most of the exterior sur-
faces of the satellite are covered with Black Kapton, exceptional shielding in form
of Germanium coated Kapton Single-layer Insulations (SLIs) can be found on both
the NAVANT and the Search and Rescue Service Antenna (L-Band) (SARANT)
antennas, whereas the latter consists of an array of six resonant quadrifilar helices
and a short backfire L-Band antenna located at the center of the array which is
characterized by a white painted ground plate.

(1: 3.19) The bus panels coated with Black Kapton are each modeled as simple,
independent plates, and to account for the full SLI coverage,

(2: 3.14) the NAVANT is represented by a cylindrical surface.

(3: 3.15) The geometrical mapping of the SARANT is somewhat more complex.
The grounding plane with the feed system of the SARANT is completely covered
with SLI and is therefore represented as a flat, polygonal surface whose outer sides
are each extended by a circular plate. The array of the six antennas are modeled as
simple cylinders placed on the corners of the polygonal surface. Finally, the short
backfire L-Band antenna is implemented as a simple circular plate with a cylinder
mounted on top.

(4, 5, 6: 3.14) The majority of the remaining instruments are located above the
NAVANT within the +X-hemisphere of the satellite. The systems installed on the
+Z-bus panel cast considerable shadowing on the spacecraft bus and main antenna
during periods of high Sun elevation θ (see shadow simulation series 3.12 and for-
mula 3.106 in connection with θ): The C-Band horn antenna is thereby represented
as a cone-shaped geometry and next to it are the laser retro-reflector array and also
the Earth IR sensors, both modeled as cubical shapes.
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(7: 3.14) The satellites are each equipped with two S-band antennas, which serve
to transmit telemetry and telecommand signals. One is also located on the +Z-bus
face, the other is mounted to the clock panel at the edge of the +Y-face and is
oriented in the -X-direction (see figure 3.10 and 3.17).

(8: 3.16) At the top of the satellite, there is a pair of thrusters positioned along each
corner of the +X-panel. (9: 3.16) In addition, solar sensors are also mounted onto
the spacecraft bus. The entire panel is covered with Multi-layer Insulation (MLI).
Unlike the instruments on the +Z-bus panel, these components generate shadowing
mainly when the Sun elevation angle is rather low.

(10: 3.17) Depending on the satellite’s attitude phase, the -Z-surface is increas-
ingly illuminated, most notably if µ = 180◦ (see attitude phases visualized by 3.6).
This leads to an increased irradiation of the space radiator installed in that area.

The solar panels were not included in the FEM because their surface area con-
tributions to SRP are constant over all orbit phases due to the special YS attitude
mode (see table 3.2 and figure 3.19). The space radiators at the long sides, per-
pendicular to the spacecrafts solar panel axis, were also not covered by the FEM,
because they do not contribute to SRP for the same reason.

(a) (b)

Figure 3.11: Before the meshing process, it must be ensured that the surface normals
face outwards. This serves as a criterion for the determination of the correct lighting
conditions.
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(a) θ = 80◦ (b) θ = 60◦ (c) θ = 50◦

(d) θ = 80◦ (e) θ = 60◦ (f) θ = 50◦

Figure 3.12: GALILEO satellite FE model with self-shadowing profiles generated
for different illumination conditions. θ is the Sun elevation angle.
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When creating a surface model, it occasionally happens that individual areas
are oriented incorrectly, so that they have to be revised in a preprocessing step
before meshing. An algorithm was written that automatically keeps track of surface
areas of the GMM that needs to be reoriented. After the final meshing operation,
the surface elements automatically inherit the normal directions of the underlying
areas. ANSYS provides the option to graphically check the normal vectors for each
surface element individually, which of course becomes cumbersome, if the number
of elements is large. The reason for this effort is to ensure the correct orientation
of the surface elements as an important prerequisite for the accurate determination
of the self-shadowing profile under given illumination conditions. In this context,
correct means that all normal vectors have to point outwards.

Figure 3.13: SRP modeling approach.
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Figure 3.14: NAVANT and other +Z-face components.

Figure 3.15: SARANT placed on +Z-face.

Figure 3.16: MLI-covered +X-face with thrusters and Sun sensors.

Figure 3.17: View on the -X hemisphere of the GALILEO satellite.
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Throughout the modeling process, satellite system components are attached and
added to the GMM. Depending on the shape of the modeled geometry, the resulting
pre-mesh usually becomes more and more complex. If a new component is added to
the model, it has to be integrated into the existing overall geometry, such that the
involved components share common boundaries. Since the integration is realized
with boolean operations, the addition of further model parts potentially introduce
new geometrical entities and in particular new areas and associated lines and vertices
to the existing GMM. The example shown in figure 3.18 illustrates a detailed view
onto the modeled +X-face of the GALILEO satellite, which is extended by a new
component (3.18a). The overlap of both the existing and new components produce
intersections and hence a more complicated geometry in the underlying solid model.
An algorithm was written in APDL that automatically detects new triangular areas
in the vicinity of the new boundary line produced by intersection operations (3.18b).
If any of the side lengths of such a new triangular area undershoots a certain limit,
it is removed from the geometrical model. The corresponding vertex of that area,
which is lying either inside our outside the projection area of the new component,
is thereby moved and merged into the nearest vertex located on the boundary line
(3.18c). Figure 3.18d focuses a particular area of interest demonstrating the outcome
of this optimization process. The resulting optimized pre-mesh is then ready for the
actual meshing operation (3.18d). The aforementioned procedure is requisite to
remove unnecessary areas, whose absolute size is unfavorable for the subsequent
meshing step. The general meshing procedure of a single surface area depends on
the element division number, which is an edge size control parameter. It predefines
and controls the number divisions applied to a specific line element as part of the
boundary of an area element. If the underlying surface area is already very small,
the edge division operation produces even smaller elements and this directly affects
the mesh of adjacent area elements. It is therefore appropriate to choose a certain
lower limit for the minimum edge length of an element. As we will see later, the
element’s edge size is also an important control parameter to tune the quality of the
simulated cast shadows by creating a mesh that is as homogeneous as possible.

(a) (b) (c) (d)

Figure 3.18: FEM pre-mesh optimization process using the example of the propul-
sion/X -panel modeling.
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Figure 3.19: GALILEO satellite FE surface model of the body from several per-
spectives. Different optical material properties assigned to individual parts of the
satellite are illustrated by different colors (see table 3.3 for material property infor-
mation).

We now consider the element-wise calculation of the SRP acceleration. Therefore
we extend the formula 3.99 for the finite element case as follows:

asrp,n = −η
(
Csrp

P⊙

c

1

mS

1AU2

|s|2
s

|s|

)
N∑

n=1

χn

[
(1− γs,n) s + 2

(
γs,n cos θn +

1

3
γd,n

)
n

]
cos θnAn (3.106)

Each surface element An has an individual orientation with respect to the Sun. This
is defined by θn, which characterizes the angle between the element’s surface normal
and the irradiation direction s. In addition, An is associated with certain material
parameters that determine the radiation exchange behavior: γs and γd constitute the
specular and diffuse reflection parameters. Table 3.3 comprises all optical material
properties, which are assigned to component-specific surface collections throughout
the FE modeling process. In addition, χn accounts for (1) Sun visibility and (2) self-
shadowing due to occlusion by other surface elements and is either 1 or 0. (1) For
each given satellite-Sun orientation and corresponding Sun incidence angle θn it has
to be checked whether the respective element An is potentially illuminated by the
Sun or not. (2) If this is true, it is necessary to check whether the direct line-of-sight
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to the Sun from the element’s perspective is free or obstructed by other elements.
Therefore, depending on the complexity of the FE model, conservatively speaking
the computational complexity increases with N2, so it is reasonable to predetermine
self-shadowing for each satellite-Sun configuration and store the information in a
lookup table χ to minimize the total computational time during an orbit simulation.
A shadowing pattern produced by the FE model is shown in the figures 3.20 and
3.13. For the same reason, lookup tables for the normalized resultant SRP forces
and corresponding torques21 are also created in dependence of χ after exporting
the FE model following the procedure presented in 3.13. Subsequently, at any time
during orbit simulation, the correct resultant SRP acceleration asrp for any satellite-
Sun orientation can then be derived from the respective normalized force table and
scaled in dependence of the current satellite-Sun distance.

21Actually, torques are rather irrelevant, since we assume a perfect YS attitude control mode.

Figure 3.20: GALILEO satellite FE model with self-shadowing profile. The Sun
incidence angle is chosen as 70◦. The surface elements shown in yellow are directly
illuminated, blue are the elements that are not sunlit, while red represents shaded
areas.
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We briefly outline the algorithm used to find the correct self-shadowing profile
for arbitrary illumination directions. This requires all geometrical information such
as element and associated node coordinates (see also figure 3.13), which are exported
as a result from the modeling process. On this basis, we first discriminate which
elements face the Sun and which have their backsides facing towards it. In this way,
the total number of element candidates can be reduced to a minimum, for which it is
still necessary to check in the following whether they are hidden by other elements or
not. Here, the benefit of the surface normal correction procedure becomes apparent.
Since it was ensured that all surface normals correctly refer to the outer surfaces of
the FE model, it is now possible to properly determine the visibility of an element’s
outer face relative to the Sun. To evaluate the self-shadowing, a ray cast procedure
is performed for each pair of elements. Hereinafter, we would like to stick to the
concept as presented in the thesis [88] on page 40 ff. The initial spawn point of a
ray is identified as the center of one element and its direction is given by its inverse
surface normal vector. To check if the ray intersects another surface element, it
must be determined whether the intersection point lies within its surface or not.
To this end, we divide the quadrilateral element into two triangles and check the
intersection condition using barycentric coordinates in dependence of the triangle’s
element nodes22. The set of all points p that lie inside a triangle forming its convex
hull is given by:

p = p0 + sp1 + tp2 (3.107)

under the condition that s, t > 0 ∧ s + t < 1. The vector p0 defines the origin
node of a triangle and p1 and p2 point from p0 to the other element nodes. The
parameters s and t can be computed from:

s =
p× p2 − p0 × p2

p1 × p2

(3.108)

t =
p× p1 − p0 × p1

p1 × p2

(3.109)

To achieve an appropriate shading resolution, several conditions must be met. (1)
The element size (element’s edge size) must be chosen appropriately23, and (2) the
aspect ratio must be as uniform as possible, otherwise the shading errors will be
larger. Suppose we consider the shadow cast by a square surface element of size
An on a uniform and flat arrangement of other square elements, then the maximum
projection error that arises from the presented algorithm is An/2. If the element
casting the shadow is larger than the element onto which the shadow is projected,
the area size of the projection will be too small and vice versa. In order to find the
optimal mesh settings and thus the appropriate element size, we perform an area
convergence study. For this reason, an illumination scenario is set up in which the
sun is very low, which should be reflected by an elevation angle of θ = 70◦ (this

22It should be noted that all geometric entities, such as surface element node coordinates, of the
FE model are interpreted in a global reference frame aligned with the Cartesian system represented
in 3.5 or 3.12.

23The element size must be chosen so that the shadow projection or contours of the FE model’s
small scale structures can still be mapped by the surface elements that receive the shadow.
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corresponds to the scenario depicted in 3.20) with respect to the satellite’s Z-axis
and we choose this larger angle to evoke a relatively large shadow. The objective is
now to evaluate changes in the total illuminated area as a function of the applied
element size. This size is gradually reduced by increasing the number of element
divisions, resulting in a finer mesh resolution. It is expected that the accuracy
of shadow mapping cannot be further improved once a certain element division
number N is reached. Eventually, this is demonstrated by figure 3.21 and confirms
that the shadow does not become more ’crisp’ beyond N = 3. For N > 3, the curve
fluctuates by a negligible amount within a convergence radius that describes surface
area deviations strictly smaller than 20cm2.

1 2 3 4 5 6 7 8
2

2.2

2.4

2.6

2.8

3

3.2

Figure 3.21: Surface area convergence diagram. If the element division number
exceeds N > 3, the value describing the total illuminated area converges, which is
equivalent to saying that no better resolution of self-shadowing is possible. The red
lines limit the convergence radius and the black line describes the average value of
all determined values without the two outliers and also represents the center for the
convergence environment.
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In [125], the reader finds a derivation of the single terms in the expression given
in squared brackets under the sum defined in equation 3.106. To describe SRP,
one basically differentiates between three momentum exchange mechanisms between
electromagnetic radiation and surfaces: Absorption, specular and diffuse reflection,
while transmission effects are regarded negligible and not taken into account in this
study. Incoming energy thus distributed according to the relation:

α + γS + γD = 1 (3.110)

For a surface element An, which absorbs energy from incoming solar radiation, the
net force Fα,n due to the corresponding momentum transfer can be written as:

Fα,n = −αn
P⊙

c
cos θnsAn (3.111)

where α denotes the absorption coefficient of the material attributed to the surface
element and the term cos θn = n · s features the view factor of the surface element.
For specular reflected radiation, one finds:

Fγs,n = −2γs,n
P⊙

c
cos2 θnnAn (3.112)

The above expression 3.112 accounts for two separate force contributions experienced
by the surface element. One is caused by the normal force component of the incident
radiation related to the s direction and the second one is the normal force component
emerging from the radiation reflected in −s + 2n cos θn direction. For the effect of
diffusely reflected radiation, we decompose the resulting force into two components.
One component accounts for a force which acts in the negative s direction, such
as defined by equation 3.111. The other force component results from an average
momentum transfer due to immediate diffuse re-emission of that absorbed radiation
in all directions. The latter, pure diffuse component is computed by evaluating the
integral of the governing radiation distribution function over an entire hemisphere.
The according integral is parameterized by ϕ ∈ [0, 2π] and β ∈

[
0, π

2

]
and gives us:

Fγd,n =− γd,n
P⊙

c

(
1

2π

∫ 2π

ϕ=0

∫ π
2

β=0

2fdiff (β, ϕ) cos β sin βdβdϕ

)
cos θnnAn (3.113)

Fγd,n =− γd,n
P⊙

c

(
1

2π

∫ 2π

ϕ=0

∫ π
2

β=0

cos β sin 2βdβdϕ

)
cos θnnAn (3.114)

In the above equation 3.113, the distribution function fdiff (β, ϕ) initially describes
a generic type of re-emission pattern, which depends on the emission direction via
β and ϕ and is substituted by Lambert’s cosine law fdiff (β, ϕ) = cos β in the
subsequent step 3.114. It states that an ideal diffuse reflector emits radiation in
an axially symmetric fashion, whereas the radiant intensity is proportional to cos β.
This can be also interpreted as a reduction of the solid angle as viewed from the
perspective of an observer from a specific angle β onto the radiating surface. The
expression 2 cos β sin βdϕ under the integral in equation 3.113 gives the base length
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of a differential surface area element in azimuth direction at the elevation angle β,
whereas dβ is the side length of the other edge. The bracket in equation 3.114 results
in a contribution of 2/3 such that the sum of both force components can be finally
written as:

Fγd,n = −γd,n
P⊙

c

(
cos θns +

2

3
cos θnn

)
An (3.115)

Summing up the terms 3.111, 3.112 and 3.115 and making use of the relation 3.110
gives us the requested relation in equation 3.106.

(a) (b)

Figure 3.22: The right graph 3.22b shows the SRP acceleration as the vector 2-
norm |⃗asrp| with respect to spherical coordinates in the range 0 ≤ θ ≤ 180 [deg] and
0 ≤ ϕ ≤ 360 [deg]. Picture 3.22a illustrates a simulated scenario where the Sun
direction (black arrow) forms an incidence angle of θ = 70◦ with the Z-axis (red
arrow). The coordinate system is in alignment with the IGS frame as compared to
3.5. In the surface plot 3.22b the float number indicates the value calculated as a
result of the illumination scenario.
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In a next step, material degradation modeling will be discussed and subsequently,
the effect on the SRP perturbation force profile will be studied. The goal is to create
a modeling tool to determine the time-varying behavior of optical material param-
eters that must be assigned to the respective surface elements An during the FE
modeling process prior to mesh generation according to 3.13. There are various
causes of degradation. The reader will find a more detailed treatment of this topic
in the respective literature [111], [82], [44]. The latter also reports on degradation
rates of common thermal finishes. Since the satellites are destined to resist space
exposure for at least twelve years in a MEO, a significant change in surface material
properties is to be expected. As introduced earlier, incident radiation can interact
with surfaces via different mechanisms and the relation between their different con-
tributions is decribed by equation 3.110. As a consequence, assuming constant or
increasing absorption properties, the reflectivity values of the surfaces are expected
to diverge over time in that the ability of specular reflection decreases. An elaborate
material degradation study has been carried out for the spacecraft MICROSCOPE,
see [63]. The study shows that changing material parameters, and in particular the
degradation of solar panel surfaces and the associated changes in optical material
properties, has a noticeable impact on the dynamics of SRP-related effects. This
demonstrates the prominence of degradation phenomena in SRP modeling and moti-
vates a further investigation of these effects as they pertain the GALILEO satellites.
Especially for the GALILEO satellites, technical discussions with [75] revealed that
the degradation of the solar panel surfaces is expected to be responsible for a signif-
icant loss in power generation during the End Of Life (EOL) phase. Consequently,
as the absorptivity of the panels increase, the SRP induced force also gets higher
according to equation 3.111.

From the perspective of thermal control, the inevitable degradation of spacecraft
coatings over a satellite’s life time turns out to be strongly unfavorable. Depending
on the life cycle stage, overheating becomes increasingly problematic due to changes
in absorptivity, so that the thermal control system must be designed to handle exces-
sive heat generation during the EOL phase. To overcome these issues one typically
uses radiators, which are appropriately sized. Since the radiators are thus over-
dimensioned for the performance needs during the satellite’s Begin Of Life (BOL)
phase, additional heat must be produced to maintain a desired temperature level.
One can thus deduce from the point of view of thermal control design that changes
in surface material properties definitely produce issues that also impact the course
of SRP induced perturbations.

The exterior surfaces of a satellite are continuously affected by (UV) radiation, free
particles or contaminants that cause optical surface material degradation, which is
typically accompanied with an increase in absorptivity and a decrease in specular
reflectivity. For empirical reasons, we expect a logarithmic time evolution of the ab-
sorptivity, which only depends on the EOL and BOL values. These are enlisted in
the table 3.3. For the description of the time dependent behavior of the absorptivity
α, we define:

dα

dt
=

p

1 + t
(3.116)
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where p is a specific degradation rate factor that is to be determined for each mate-
rial. With the initial value for α = αBOL, 3.116 can be solved as follows:

α (t) = αBOL + p · ln (1 + t) (3.117)

Finally, we can solve for the factor p by setting α = αEOL and t to the specific total
life time tEOL:

p =
αEOL − αBOL

ln (1 + t)
(3.118)

With this, the absorptivity for any epoch can now be estimated with the help of
relation 3.117.

For the estimation of both the specular and diffuse reflectivity, we follow an analog
scheme. We assume that for any material, the effect of diffuse reflection becomes
more pronounced over time relative to the effect of specular reflection. An exponen-
tial degradation law is adopted to describe this relationship:

β (t) =
γS (t)

γD (t)
exp−λ(t) (3.119)

Here the specular and diffuse reflection coefficients are denoted as γS and γD, the λ
factor is used to adjust the rate of change of β (t) and could reflect the characteristic
resistance against relative changes of the respective material. Applying the relation
3.110 to the aforementioned equation, one yields:

γS (t) =
β (t) (1− α)

1 + β (t)
(3.120)

γD (t) =
(1− α)

1 + β (t)
(3.121)

As mentioned above, there are various effects that lead to material degradation
and thus to an increase in absorption properties. In the following, we give a brief
overview of the prevailing mechanisms. Regarding the consequences of UV irradia-
tion, one distinguishes between two different phenomena. As UV photons interact
with the spacecraft’s surface, they can cause charge separation in crystal lattices,
which in turn produces color defects. The electrons of the so-called F-centers, which
consist of vacancies in the crystal lattice, absorb electromagnetic radiation in the
visible spectrum, which leads to discoloration of the material at the respective lo-
cation. Another sort of process induced by UV light absorption involves chemical
reactions through which bonds of polymer chains dissociate, which can be observed
at thermal control surfaces such as (coated) polyimide films, often constituting a
spacecraft’s outer protective cover (e.g. Kapton-based materials). This produces
reactive species, which can redeposit on neighboring surfaces by recombination with
other molecules to generate new stable chemical compounds. In addition to UV
light exposure, the GALILEO satellites are affected by high-energetic particles and
radiation. The particle populations and radiation levels present in higher orbits as
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the MEO or Geosynchronous Orbit (GSO) are known to be more severe than it is
the case on altitude levels of Low Earth Orbit (LEO) orbits. This is owed to the
radiation belts that extend to orbits where spacecrafts like GNSS satellites typically
reside, and consequently they are more affected by high-energetic particles and ra-
diation. As for the effects on surfaces, this can cause micro-damages by initiating
chemical reactions through ionization. New formations of polymer molecules are
potentially created as a result, similar to the effect of UV radiation.

According to the BOL and EOL values in table 3.3, the top layer of the Black
Kapton blanket exhibit a slow degradation rate and associated change in reflective
material properties. This material is hence exptected to outlast the lifecycle of most
of the other surface coatings covering a spacecraft. As the surfaces of outer thermal
control coatings as MLI are typically wrinkled, this also suggests to reason that the
amount of diffusely reflected radiation is at least as high as the amount of specular
reflected radiation, but also rather unaffected over time. This would translate to a
value of β of nearly 1 and a λ-factor of almost 0.

In fact, as can be viewed from picture 3.23d in the figure 3.23 below, the absorp-
tion parameter for the MLI behave relatively constant, whereas for white paint, an
increasing trend can be observed over time. The SARANT and NAVANT blankets
also exhibit a similar behavior regarding the absorption properties. It should be
noted that for most of the time in orbit, only three of the bus panels (+Z − Z and
+X-faces) of the GALILEO satellites are illuminated due to the special attitude
mode (see also 3.6). This leads to higher loads of UV light exposure and thus an in-
creased surface degradation impact, especially on larger surface structures, which are
visualized in 3.8 and 3.9. As a consequence, under ideal conditions, the illumination
intensity tends to zero on the other satellite faces. Especially, the surface properties
of three different materials play a crucial role. The MLI and two slightly different
Kapton-Germanium single layer insulation blankets, which protect the spacecraft’s
antennas from direct radiation exposure by significantly reducing its solar absorp-
tance and infrared emittance. The antenna modules’ blankets approximately take
up ≈70% of the total satellite’s +Z-face. The upper side of the grounding plane of
the SARANT is completely covered by a Kapton-Germanium SLI, with the reflective
Germanium film facing space. The NAVANT is the satellite’s navigation antenna
and its Sun shield also consists of a Kapton-Germanium SLI. Its according BOL
absorption parameter is just 70% of that of the SARANT and the corresponding
reflection parameters γS and γD are larger by 50% and 30%, respectively. Unlike
the behavior of MLI, we expect a faster change in surface conditions and chose a
λ-factor around 0.5 due to the special illumination conditions.
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Figure 3.23: Parameter time series analysis for selected surface material parameters
in dependence of λ.

The pictures in 3.23a to 3.23c show the evolution of selected material parameters
in dependence of the scaling factor λ. One can see that with small values of λ, slow
degradation can be modeled and this applies vice versa to large values. Finally the
pictures in 3.24 describe the SRP generated acceleration profile and its temporal
variations. The initial BOL distribution is shown on the right and the contour
diagrams on the left show the effect of progressive surface material degradation due
to space environment exposure. The changes after three and ten years, respectively,
are shown relative to the BOL distribution.
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Figure 3.24: The right graph shows the initial SRP acceleration profile of the space-
craft’s body at BOL (compare figure 3.22b). The left side represents the profile
changes ∆a⃗srp after three and ten years relative to the initial BOL distribution.
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3.4 SRP parameter estimation strategy

We pursue the goal to provide a performance study that compares empirical SRP
parameters with respect to SRP models of different fidelity levels. These force
parameters appear in the satellite equations of motion 3.60 as np independent co-
efficients p = {p1, . . . , pn} in the acceleration term, asrp. In the special case of a
nine-parameter ECOM, the expression asrp is extended by the second term on the
rhs in formula 3.100. 3.60 can be rewritten as a system of six first order differential
equations for the satellite states y(t) = (r(t),v(t))T , where the sum of accelerations
is mapped by a function a:

dy(t)

dt
= F (t,y(t)) =

 v(t)

a (t, r(t),v(t), p1, . . . , pn)

 (3.122)

In the context of this description, we are primarily interested in the cause of the
satellite motion and not foremost in the description of the actual state of motion
y(t) of the satellite, being composed of position and velocity, which can be directly
derived from formula 3.122. This type of problem formulation is a classic example
of an inverse problem typically encountered in statistical orbit determination. A
comprehensive overview of the technical framework necessary for statistical orbit
determination is provided by e.g. [96] or [70] and in this section we will mainly
follow the instructive concepts outlined in the literature.

The force parameter estimates are computed with the help of a batch weighted
linear Least-Squares adjustment method. For each epoch and corresponding set
of measurements, a system of observation equations can be composed that implic-
itly includes the unknown quantities as satellite states and parameters originating
from the orbit model. Since the functional relationships between the measurements
and these parameters are generally non-linear and solving the unknowns directly is
typically a difficult problem, approximate solutions based on linearized observation
equations including the orbit model must be constructed. The determination of the
unknowns is done by inversion of a system of linear normal equations resulting from
the condition that the weighted sum of squared residuals must reach a minimum.
These residuals represent the difference between the observed and computed values,
where the latter can be derived from a combination of (linearized) measurement and
orbit models. The result consists of estimated state and parameter corrections that
are used as adjustments by applying them to a set of initial values. The steps of
linearization, solution of the normal equations and parametric adjustments of input
values are repeated until the increments are small enough in relation to the sought
accuracy of the parameters and hence the orbit fit suffices a well-defined convergence
criterion.
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3.4.1 Variational equations

This section outlines the derivation of the variational equations that serve as the
basis for the orbit model. For an arbitrary time instant for which observation data
are available, a relationship between measurements and satellite states y(t) as well
as force parameters p must be established. This is achieved by constructing the
so-called state transition matrix Φ (t, t0), which can be interpreted as a Jacobian
matrix describing the approximate state change of the satellite under the influence
of all orbital perturbations. To obtain Φ, one takes the partial derivative of the
function F (t,y(t)) in 3.122 with respect to an initial state y0 = y(t0), followed by
integration of the equations of motion:

∂

∂y0

dy(t)

dt
=

∂F (t,y(t))

∂y(t)

y(t)

y0

(3.123)

dΦ (t, t0)

dt
=

∂F (t,y(t))

∂y(t)
Φ (t, t0) (3.124)

Similar to the calculation of the state transition matrix, the same linearization
approach can be performed to find the so-called sensitivity matrix S(t, t0).

∂

∂p

dy(t)

dt
=

∂F (t,y(t))

∂y(t)

∂y(t)

∂p
+

∂F (t,y(t))

∂p
(3.125)

dS(t)

dt
=

∂F (t,y(t))

∂y(t)
S(t) +

∂F (t,y(t))

∂p
(3.126)

The combination of 3.124 and 3.126 finally gives us the variational equations:

d

dt
[Φ,S] =

 03×3 13×3

∂a(t,r(t),...)
∂r(t)

∂a(t,r(t),...)
∂v(t)

 [Φ,S] +

03×6 03×np

03×6
∂a(t,r(t),...)

∂p

 (3.127)

To resolve Φ and S, the equations 3.127 must be numerically integrated together
with the state vectors r(t) and v(t), since the evaluation of the partial derivatives
requires the knowledge of the position and velocity of the satellite. As initial values,
Φ0 = 16×6 and S = 06×np are used for the matrices. Care must be taken throughout
the integration process. Depending on the complexity of the dynamics F (t,y(t)),
the time intervals must be chosen small enough to avoid rapid growth of integration
errors.
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3.4.2 Linearization

As noted earlier, linearization of the governing observation equations including the
orbit model is a prerequisite for the practical implementation of statistical orbit
determination and must be supplied in preparation to the parameter estimation
process. The measurements z(t) can be modeled by the observation equations (3.1,
3.2, and 3.3), so that at a particular epoch tk, z(tk) = zk may be expressed as
follows:

zk = h (y(tk), tk) + ϵk (3.128)

where ϵ is the measurement error associated with the discrete measurement zk.
Equation 3.128 is generally non-linear and also depends on the solution of 3.122 de-
scribing the orbit. It is our objective to find the best estimates for the satellite states
and force model parameters through an iterative weighted linear Least-Squares fit-
ting procedure. Consequently, the equations 3.122 and 3.128 must be converted into
their respective linear forms. A Taylor expansion of 3.128 around z(t0) = z0 helps
to explicitly link the measurements to the satellite states y(t):

z (t) ≈ z0 +
∂h (y(t), t)

y(t)
∆y(t) (3.129)

∆z(t) ≈ ∂h (y(t), t)

y(t)
∆y(t) (3.130)

where ∆y(t) = (y(t)− y0) summarizes the difference of the actual satellite state
with respect to a reference state y0.

Solving the variational equations 3.127 already provides us with the state transition
matrix Φ, which represents the first order approximation of the function F (t,y(t))
around a given state y0. For sufficiently small deviations from y0, this matrix de-
scribes the satellite’s state evolution via the orbit state partials. Similar to the state
transition matrix, the S matrix contains the force model partials describing the sen-
sitivity of position and velocity, and hence the shape of the orbit, to force model
parameters. However, in the context of our investigations, we aim at an increased
understanding of the effects related to SRP and hence restrict the S matrix to the
description of the SRP model partials. The relationship between the measurement
partials and the orbit-related partials can be expressed as follows:

[
∂z(t)
∂y(t0)

, ∂z(t)
∂p

]
=

(
∂z(t)

∂y(t)

)T [
Φ(t, t0), S(t, t0)

]
(3.131)

The measurement partials ∂z(t)
∂y(t0)

with respect to the satellite’s state must be cal-
culated from a measurement model. For this purpose, the observation equations,
which have already been described and established in section 3.1, are linearized.
In the special case of the dual-frequency ionosphere-free combination, one usually
refers to the equations 3.6 and 3.13, respectively. The measurement partials with
respect to satellite position and velocity become:
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∂z(t)

∂y(t0)
=

∂ρsr
∂y(t0)

= −(rr(t)− rs(t− τ))

ρ
(3.132)

where the function z(t) must be replaced with the corresponding observation model
P s
r,IF or Φs

r,IF . Expression 3.132 shows that the ρ -term only produces satellite po-
sition partials and it is the only one in the mentioned observation models, which
directly relates to the satellite’s states. We write out the comma-separated contri-
butions in 3.131 in their full form. For the first part, we have:

∂z(t)

∂y(t0)
=
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∂z
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∂z
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∂z
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∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0
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∂ẋ0

∂z
∂ẏ0
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(3.133)

The partials of the measurements with respect to the SRP parameters are:

∂z(t)

∂p
=
[
∂z
∂x

∂z
∂y

∂z
∂z

01×3

]


∂x
∂p1

· · · ∂x
∂pn

∂y
∂p1

· · · ∂y
∂pn

∂z
∂p1

· · · ∂z
∂pn

∂ẋ
∂p1

· · · ∂ẋ
∂pn

∂ẏ
∂p1

· · · ∂ẏ
∂pn

∂ż
∂p1

· · · ∂ż
∂pn


(3.134)

For clarity, we dropped the superscript satellite index s in the coordinate notation of
the partial derivatives. As can be seen from the equation 3.127, one must evaluate
the partial derivatives of the accelerations with respect to the satellite states and
force parameters as input values for the matrices to obtain Φ and S after integra-
tion. Since we do not have any velocity dependent terms in our orbit model 3.60,
no velocity dependent partials must be calculated. In section 3.3.1, the individual
acceleration contributions due to geopotential perturbations are discussed and sub-
sequently 3.3.3 focuses on SRP-related perturbations. The gradient of geopotential
and point-mass perturbations in an ECEF coordinate system is given in [70] on page
245 and 247, respectively. Since the relativistic orbital perturbations are in fact very
small, we neglect their contribution to the gradient. In order to find the gradient
of the SRP parameters, it is necessary to first choose a suitable coordinate system
in which the position partials are calculated based on equation 3.101. We compute
the partial derivatives of the accelerations in the special body-fixed DYB-system de-
fined in 3.87. Starting from the nine-parameter ECOM implied by equation 3.100,
we then obtain the following terms for the corresponding directions:
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∂asrp,D

D0

= 1,
∂asrp,D

Dc

= cos(µ),
∂asrp,D

Ds

= sin(µ)

∂asrp,Y

Y0

= 1,
∂asrp,Y

Yc

= cos(µ),
∂asrp,Y

Ys

= sin(µ) (3.135)

∂asrp,B

B0

= 1,
∂asrp,B

Bc

= cos(µ),
∂asrp,B

Bs

= sin(µ)

The gradient from equation 3.135 is then transformed into a suitable, common coor-
dinate system so that it can finally be combined with the vector of partials formed
from asrp with respect to the SRP scaling parameter Csrp.

The observation equations depend on additional nm parameters of the measure-
ment model that we have not previously considered and which are decoupled from
the orbit model. Depending on the required accuracy, the linear observation model
is extended to include the estimation of the clock parameters, however, we restrict
ourselves to the use of precise clock solutions provided by the IGS as explained in the
next section 3.5. Furthermore, especially for applications as POD, corrections for
the zenith wet delay are also typically added to the unknowns, and a corresponding
mapping function as presented in 3.29 must be prepared as part of the measurement
model.
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3.5 Parameter Estimation

In the previous subsection, we established the variational equations 3.127 and spec-
ified the components of their solution, the state transition matrix Φ and the sen-
sitivity matrix S (3.133 and 3.134). We have seen that the variational equations
must be integrated jointly with the differential equation system of the orbit model
3.122, since the former depend on its solutions. More precisely, derivatives appear
in the governing system of equations 3.127, which must be evaluated for particular
times for the respective integration steps. Following this orbit propagation process,
we need to evaluate the residuals for each measurement record with respect to the
associated computed values in preparation to the estimation scheme. Here, the com-
puted values are derived from the linear model 3.130, formed from the solutions of
the underlying variational equations for specific times, which of course must coincide
with the time tags of the available measurement records. In this section, we focus
on the actual measurement data processing and outline the structure and solution
of the objective normal equation system.

45°S

 0°

45°N

75°N

120°W  60°W   0°  60°E 120°E 180°E
Earthstar Geographics

 5000 mi 

 5000 km 

Figure 3.25: Distribution of IGS Multi-GNSS Experiment (MGEX)-related GNSS
tracking stations whose measurement data are included in the analysis.
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Data preparation and processing As station and satellite clock data we
use the IGS MGEX solutions generated by the CODE analysis center and finally
provided to the IGS24 [27]. The satellite raw data data used for the study are
sourced from the IGS data center of the Bundesamt für Kartographie und Geodae-
sie (BKG)25. It also provides GNSS observation data and derived products from a
global network of ground stations cooperating with the IGS, which are organized in
the standardized RINEX exchange format.

For the SRP parameter study, a monolithic set of measurement data of all available
tracking stations (see map 3.25) covering a one-month period (February 11, 2017 to
March 12, 2017) is used for the purpose of long-arc force parameter adjustments.
The variations of the Sun’s elevation β over this time are very small and reach ap-
proximately 3◦. This is due to the fact that β floats around its maximum within this
period such that no eclipses occur. The RINEX data are preprocessed sequentially
before each iteration. A RINEX file is always related to observations of a specific
tracking station. It contains observation data of multiple GNSS constellations and
covers a time period of one day. The preprocessing is done in a day-wise fashion
and includes filtering the data for observations of the specific satellites GSAT0202
and GSAT0201 per station. In addition we select the signals of interest for which
code or carrier phase observations are available. We intend to use dual-frequency
pseudo-range observations and focus on the signal types E1, E5a and E5b providing
us C1C, C5Q and C7Q observation codes. Consequently, if for any day, a RINEX file
associated with a certain tracking station does not contain at least two concurrent
series of different observation code data, the complete data set is discarded for that
day. Depending on the actual satellite’s operational or health status, which is part
of the GNSS observation data records in the RINEX file, several flags are (un-)set
epoch-wise and must be checked:

1. OK

2. Power failure between previous and current epoch

3. Start moving antenna

4. Header information follows

5. External event (epoch is significant, same time frame as observation time tags)

6. Cycle slip records (as information about carrier phase condition)

This helps to decide whether a data record of a certain epoch should be removed
or not.

Pre-fit residuals For each station r and epoch n for which measurement data
of satellite s exist, we determine the pre-fit residuals identified with the lhs of the
linear observations model 3.130. In order to do so, all the systematic error terms
appearing in equation 3.136 must be evaluated to obtain ∆zn related to a time
instant tn.

24http://ftp.aiub.unibe.ch/CODE_MGEX/CODE/
25ftp://igs.bkg.bund.de/IGS/obs/
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∆zn = P s
r,IF − ρsr,0 − c

(
∆t̂r −∆t̂s

)
− T s

r − ϵP,IF (3.136)

As a reminder, we would like to remark that multi-path effects are neglected. As
explained in 3.1, the signal transmission time is necessary for the correct determi-
nation of the satellite’s state at the time of observation and hence the distance ρsr,0.
Starting with a satellite’s ephemeris at a given time, the correct signal propaga-
tion time for the observation epoch tn is determined iteratively: The initial state
is used to derive an initial estimate of the distance between the receiver and the
satellite. Between the time of transmission and reception, the Earth rotates by a
small amount. One must therefore perform a transformation of the current position
and velocity of the satellite. As a result, one obtains a new state from which an
updated signal path range and thus signal propagation time is calculated. Usually,
one has to repeat this procedure three to four times to get proper results. The orbit
propagation algorithm returns values for position and velocity every 30 seconds to
cope with the RINEX data sampling rate. To relate the predicted satellites states
to the iterated transmission times, we need to interpolate them. For this purpose,
we use the approach found in [93], which proposes a harmonic series expansion for
the interpolation of precise satellite ephemerides. The underlying algorithm ensures
that the accuracy of the precise orbit data remains within the centimeter range.
Finally, the state transition matrix Φ as well as the sensitivity matrix S are also
evaluated at the respective time of signal transmission by interpolation. One must
be careful with the observation time scale because it must match the time scale,
which refers to the propagated satellite states.

Weighted Least-Squares adjustment To solve for the vector of state and
parameter adjustments ∆x̂ we have to find the solution to the following optimization
problem, i.e. the minimization of the sum over the weighted mean-squared error with
respect to all N data records remaining after preprocessing:

argmin
∆x̂

N∑
n=0

qn
(
∆zn −HT

nΨn∆x̂
)2

(3.137)

where qn are considered the weights associated with the nth observation. To deter-
mine the weights qn, we refer to our empirical background knowledge of instrument
precision, which determines the measurement dispersion of each zn. The correspond-
ing uncertainties associated with the different observation types have already been
discussed in 2.3 and 3.1. In expression 3.137, the matrix Ψ was introduced. It
combines the two matrices Φ and S:

Ψ =


Φ S 06×nm

0np×6 1np×np 0np×nm

0nm×6 0nm×np 1nm×nm

 (3.138)

As a consequence, the measurement matrix H must take the following shape:

HT =
[
−(rr(t)−rs(t−τ)T )

ρ
01×3 01×np 01×nm

]
(3.139)
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In addition to the number of force model parameters np, the number of measurement
parameters nm predetermine the dimensions of both the matrices Ψ and H. The
solution to the problem 3.137 reads:

∆x̂ =
(
XTQX

)−1
XTQ∆z (3.140)

Equation 3.140 represents the normal equations and its solution gives the best linear
unbiased estimate ∆x̂. In 3.140, we introduced X as a substitute for the product HΨ
and the matrix Q characterizes the measurement dispersion. An optimal solution to
the weighted Least-Squares problem 3.137 requires that the matrix Q produces the
least variance among all possible linear unbiased estimates ∆x̂. We assume that the
measurements errors are uncorrelated. Consequently, we set qn equal to the inverse
variances qn = σ−2

n , which serve as weights, and identify them with the diagonal
elements of the matrix Q to satisfy the optimality criterion26. The updated state
and parameter vector x̂ is then obtained from adding 3.140 to the reference vector
x0, which served as an initial state for orbit propagation:

x̂ = x0 + ∆x̂ = x0 +
(
XTQX

)−1
XTQ∆z (3.141)

We write the mean-squared error of the measurements as E
[
ϵϵT
]

and it contributes
to the respective covariance matrix of the estimation results, which can generally be
described as follows:

Cov (∆x̂,∆x̂) =
(
XTQX

)−1 (
XTQ

)
E
[
ϵϵT
]

(QX)
(
XTQX

)−1
(3.142)

Since the errors are uncorrelated and assumed to be entirely described by the empir-
ical measurement uncertainties characterized by the matrix Q adopted above, one
immediately verifies that the description of the corresponding covariance matrix
reduces to:

Cov (∆x̂,∆x̂) =
(
XTQX

)−1
(3.143)

With the help of 3.143 the estimation precision, i.e. standard deviation of the
nth element of the vector ∆x̂ can be derived from the following expression:

σ∆x̂n =
√

Cov (∆x̂n,∆x̂n) (3.144)

26If the measurements are correlated, the covariance matrix is generally fully populated. In this
case the matrix Q in 3.140 must be the inverse of the measurement covariance matrix to still solve
3.137 under the imposed conditions. In chapter 4, equation 4.23 gives an example of a covariance
matrix that maps the measurement dispersion produced by a first order autoregressive process.
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Observation weighting It is common to complement the above weighted
Least-Squares scheme with some limiting assumptions about the weights. It is as-
sumed that with decreasing elevation of the satellite the received signal quality
becomes worse. Therefore, an elevation dependent model is applied to down-weight
the observations when the satellite is at low elevations (see [37]):

σ2
Q,n = σ2

X,n

(
1 + 10e

− ϵ(tn)
ϵcut

)
(3.145)

where the subscript X is a placeholder for the observation identifier P (pseudo-
range) or Φ (carrier phase). The fraction in the exponent is the ratio of the time
dependent elevation ϵ(tn) of the satellite with respect to a topocentric coordinate
system and a cutoff value ϵcut, which is chosen to amount 10◦. If the elevation
reaches the threshold ϵcut, the corresponding data record is rejected.

Normal equation stacking Depending on the purpose of the orbit determi-
nation application, a distinction is made between arc-related parameters and global
parameters whose values are to be estimated over multi-arcs. In our case, for the de-
termination of satellite states and SRP parameters, this means that the adjustments
relate to different time intervals. The satellite state estimates are corrected arc- or
day-wise, while SRP parameter updates reflect the best estimates based on multi-
arc periods encompassing the entire data set. After each Least-Squares adjustment
iteration, changes of SRP parameters thus affect the entire multi-arc orbit simula-
tion process predicting the new satellite positions and velocities, while updates to
the latter affect each one-day arc propagation independently. Since the matrix Q
is diagonal, the structure of the multi-arc-related normal equation system 3.140 is
essentially determined by the shape of X:

X =



X1 · · · X1g

X2 X2g

...
. . .

...

Xn

...

0 · · · Xng


(3.146)

From X, it becomes obvious that most of the matrix elements are zero, because the
arc-related parameters associated with the state transition partials in the Xk matri-
ces are independent from each other. Therefore, they are arranged on the diagonal
of the block matrix. However, there are common arc-interrelated SRP parameters
upon which all trajectories depend, that is why the last column is fully populated
with the sensitivity matrices Xkg containing the SRP parameter partials. The sub-
script g indicates that the matrices Xkg are tied to the global SRP parameters. In
short form, the normal equation system is conveniently written as:
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∆x̂ = N−1b (3.147)

N =
(
XTQX

)
(3.148)

b = XTQ∆z (3.149)

where we have identified the individual terms of equation 3.140 with the components
N and b of the normal equation system. Accordingly, the combined multi-arc normal
equation system is assembled as follows:

∆x̂6×1

∆x̂6×1

...

...

∆x̂np×1


=



N1 · · · N1g

N2 N2g

...
. . .

...

Nn NT
(n−1)g

NT
1g NT

2g · · · NT
(n−1)g Nng



−1


b1

b2

...

...

bn


(3.150)

Each normal matrix Nk in 3.150 comprises information related to the kth arc. The
row dimension of each Nk is equal to nr×nt(r). nr corresponds to the total number
of tracking stations, each providing a certain number of data epochs nt(r).

Solution The iterative solution of 3.141 quickly converges to an optimal esti-
mate ∆x̂, which can be concluded from the two figures 3.26 and 3.28. The former
represents the residuals ∆z(t) before the first Least-Squares adjustments are used to
adapt the parameters of the orbit model. In addition to the plots for the residuals
associated with satellite GSAT0202, for completeness the residuals for GSAT0201
are also shown in figures 3.27 and 3.29. As input to the orbit model we make use of
the new FE SRP model for both satellites (see 3.19) introduced in section 3.3.3.2.
Each subplot shows a collection of residuals related to the arcs named in the titles
and the associated data points represent the values calculated based on all available
station-specific observation data, where the coloring serves as a mapping between
these values and particular stations. The harmonics describe the remaining system-
atic effects that are presumed to originate exclusively from SRP or TRP effects.
The second plot 3.28 shows the residuals with respect to an updated orbit model,
where the satellite states and SRP parameter corrections ∆x̂ have been added to
the reference values x0. The SRP parameter updates in numbers can be found in
the table 3.4, where the estimation results with respect to a box-wing FE model
and the proposed high-fidelity FE model are compared. We also note that the esti-
mation results based on the observation data of the satellite GSAT0201 agree very
well with those from GSAT0202. The box dimensions and the optical properties
are thereby configured according to the official GALILEO satellite metadata27. The
estimation parameters in the table compose the parameters of an ECOM1 model
following the SRP parameter specifications in [71]. The choice of this model is jus-
tified by (1) the high β angle during the analysis period, which is not expected to

27https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata
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require coverage by the once-per-revolution terms Dc and Ds, and (2) the residual
effects due to the asymmetry of the spacecraft should be adequately covered by
the once-per-revolution terms Bc and Bs. The benchmark discovers that among
the estimated values, mostly the D0 components differ from each other. The D0

coefficient measures the acceleration against the direction to the sun and the differ-
ence that emerges from the two estimates for the different a-priori models measures
∆D0 ≈ 1 × 10−9m/s2. This shows that the high-fidelity FE model improves the
prediction of SRP perturbations over the simpler a-priori box-wing model. The Y0

component is negligible small, which is reasoned by the perfect YS attitude mode
assumed throughout the orbit simulations.

The orbit simulation performance of the high-fidelity FE Model versus a purely
empirical ECOM1 model is further demonstrated by plot 3.30. The convergence
speed of the estimation procedure given the purely empirical model appears to be
rather slow as compared to the FE model. It is also evident that the plots represent-
ing the performance of the empirical model cover a wider range of values, while the
orbit predictions using the FE model are closer to the comparative precise orbit so-
lution. We also compared the orbit prediction performance between the high-fidelity
FE and the FE box-wing model. The RMS values were found to produce similar
results over the simulated orbit arcs in each case. However, the more complex model
apparently proves to be more physically meaningful, as confirmed by the parameter
estimation results.
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Figure 3.26: Orbit residuals before the first adjustment step. As input to the orbit
model, we combined a five-parameter ECOM1 model with an a-priori FE model
introduced in section 3.3.3.

Figure 3.27
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Figure 3.28: After one iteration, the Least-Squares adjustment could significantly
reduce the residuals pictured in 3.26. The resulting SRP parameter estimates are
presented in table 3.4.

Figure 3.29
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Figure 3.30: Comparison of relative orbit prediction performance based on different
SRP models with respect to precise orbit solutions for satellite GSAT0202. The
orbit propagation results visualized by the blue and dark red lines are each calcu-
lated on the basis of purely empirical SRP models, while the red curve reflects the
performance of a semi-empirical model based on a high-fidelity FE model.

SRP Parameter Box-Wing + ECOM1 FEM + ECOM1

Csrp 1.20 ± 4.47×10−3 1.19 ± 4.36×10−3

D0 -3.80×10−9 ± 3.17×10−10 -2.87×10−9 ± 3.14×10−10

Y0 -6.62×10−10 ± 2.46×10−11 -6.84×10−10 ± 2.42×10−11

B0 2.38×10−9 ± 3.75×10−10 2.89×10−9 ± 3.69×10−10

Bc 1.10×10−9 ± 1.43×10−10 1.32×10−9 ± 1.41×10−10

Bs -1.77×10−11 ± 4.00×10−11 -2.41×10−11 ± 3.91×10−11

Table 3.4: Parameter estimation results comparing the model performance two dif-
ferent a-priori SRP models.
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3.6 Satellite clock estimation

Satellite clock biases are typically estimated at every measurement epoch28 and
can thus only affect those quantities, which are estimated simultaneously. If in
addition to the clock biases, the satellite states and dynamic model parameters
are also unknown, one strategy for their determination is to take a detour via the
application of the double-differenced ionosphere-free combination. This makes it
possible to eliminate the systematic clock errors from the underlying observation
equations as demonstrated in 3.20 and focus on the accurate resolution of the re-
maining orbit-related states and parameters to derive an orbit solution. However,
double-differencing has the disadvantage that observation data from two satellites
and two stations must be available for sufficiently long time periods. Furthermore,
the corresponding data recordings must have been obtained from different obser-
vation data streams via different frequency channels, which is necessary to form
ionosphere-free combinations. Apart from the fact that double differences generate
higher noise levels, the data requirements also make it less likely to find a sufficient
number of appropriate joint observations for each time period. Once the orbit is
accurately known, the clock biases can then be determined in a zero-differenced
fashion from the observation model. Zero-differencing was our method of choice in
the preceding section, where the plain ionosphere-free combination was used to yield
the pre-fit residuals 3.136. In a parallel study from 2016, Giorgi et al. [45] provided
preliminary results on the gravitational redshift derived directly from observation
data of the Geodetic Observatory Wettzell, WTZ3. Here, a similar approach was
taken to estimate the differential clock biases on an epoch-by-epoch basis using a
particular observation model, and finally determine the redshift from the estimated
results. The database used to calculate the pre-fit residuals included orbit solutions,
daily station coordinates, and station clock corrections and the tropospheric zenith
delays from CODE, among others.

Figure 3.31 shows different sets of clock offsets derived from precise clock solu-
tions produced in collaboration with ESA. The characteristic non-stochastic clock
drift has already been detrended for each individual data set. In each subplot of
3.31, large data sets of clock errors from two different clock solutions are compared.
These were determined using two independent estimation strategies. The blue data
series reflects the estimation results using an orbit model configured with a purely
empirical ECOM2 model29, while the red plotted data points outline the behavior
of the results under the influence of a semi-empirical ECOM1 that was augmented
with an a-priori box-wing model. It was our objective to evaluate the performance
of different standard SRP models in terms of clock estimate accuracy improvements:
It can be seen from the RMS values that the use of a semi-empirical model renders
smaller residuals and outperforms the purely empirical model on average. From
the description of the procedure for estimating clock offets, it becomes clear that
any shortcomings on the orbit modeling side are inevitably absorbed by the clock
estimates, which is equivalent to the statement that the accuracy of the clock es-

28As can be seen from the RINEX data files, a thirty second sampling interval is common.
29The ECOM2 was parametrized with constant accelerations in all directions D0, Y0 and B0,

second order harmonics in D -direction Dc,2 and Ds,2 and first order harmonics in B -direction
Bc,1 and Bs,1.
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timation is limited by the SRP model chosen. Similar insights into the clock data
performance of GALILEO satellites are discussed, for example, by Sidorov et al.
[104].

Figure 3.31: Day-wise clock residuals. The plots show the distribution of clock
residuals over a one-day period. Each plot combines two different data sets, each
comprising fifty contiguous days of clock data estimation results. Each data set is
computed on the basis of different SRP models.
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CHAPTER 4

Clock data analysis

4.1 Clock data processing

Various resources are suitable for processing and analyzing clock data. The IGS is a
data service of the International Association of Geodesy. It consists of a worldwide
consortium of associated institutions as tracking stations that provide GNSS data
from which a variety of products and solutions are derived and which are also useful
for scientific purposes. The IGS initiated the MGEX to increase the ability of the
associated station network to track and analyze the observation data of all GNSS
constellations including the GALILEO system. The resulting products of the IGS
also comprise combined satellite ephemerides, global tracking station coordinates
and velocities, station and satellite clock solutions, Earth rotation parameters, as
well as global atmospheric maps and data. These products are released on a weekly
basis and are reprocessed regularly to address changes in modeling approaches and
strategies. Data products derived from the MGEX are provided by a number of
analysis centers and include, for example, precise orbit and clock products that are
also suitable for our analysis. A table of all products distributed by the IGS can
be found on the corresponding IGS website12. The ESA Navigation Support Of-
fice is a standalone facility, which also produces and administrates GNSS products
especially for satellite constellations as GPS, GALILEO and GLONASS. Satellite
precise orbit and clock solutions are made available in the form of Extended Stan-
dard Product (SP3)3 files from which clock timing data are used throughout our
analysis. In detail, the SP3 files contain position, timing information/time offsets
of the specific satellite clocks, velocity and the clock’s rate-of-change results derived
from day-wise POD best fit solutions to GNSS observations, which are sampled in
five minute intervals. One must be careful with the usage of the data, since the data
at hand is related to the GPS time scale.

The clock database content encompasses a total duration of nearly three years.

1https://www.igs.org/products
2https://igs.org/mgex/data-products/
3ftp://igs.org/pub/data/format/sp3_docu.txt
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The starting date of the epoch under consideration is November, 11, 2015 and the
last day is December, 17, 2017. Over the data collection period, five of the eight
atomic clocks on the satellites were active. Table 4.1 shows the operational periods
of these clocks. The Passive Hydrogen Maser (PHM) is chosen to be the primary
and master clock on each of the GALILEO satellites and the Rubidium Frequency
Standard (RAFS) is the secondary unit serving as a backup. For the purpose of
redundancy, there are always both clock units of one type (PHM or RAFS) active
at a time. With a minimum Allan Variance (AVAR) of σy (τ) ≈ 5 × 10−15, the
former is proven to exhibit the best long-term stability over durations of approxi-
mately one day, whereas the latter renders a better short- and mid-term stability,
while the long-term stability is around σy (τ) ≈ 5 × 10−14 - one magnitude below
the performance of the PHM. Thereupon, the clock performance of the PHM gives
reason to carry out clock data analyses based on time durations of about one day.
The SP3 files including the clock data feature day-boundary discontinuities. Data
analyses based on these files, which require the inclusion of data intervals beyond
one day are thence deemed unreliable for a relativistic precision test. In consequence
of the last two arguments, we adopt a day-wise data analysis approach described in
this section. Results of on-ground life cycle and performance tests as well as details
about the quality of operational performance can be found in [90]. Figure 4.1 shows
the in-orbit frequency stability performance of the PHMs of different GALILEO
satellites. After time periods longer that one day, the Allan Deviation (ADEV) typ-
ically increases again due to effects like temperature drifts or other environmental
disturbances. The technical specifications of the GALILEO are summed up in [98].

Clock Satellite Start Date End Date Number of days Set

PHM-B GSAT0201 11-Jan-2015 15-Jun-2016 522 1

PHM-A GSAT0201 02-Jul-2016 16-Dec-2017 533 2

PHM-B GSAT0202 19-Mar-2015 04-Nov-2015 231 3

RAFS GSAT0202 05-Nov-2015 02-Jul-2016 241 4

PHM-A GSAT0202 03-Jul-2016 17-Dec-2017 533 5

Table 4.1: Satellite clock operation periods.
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Figure 4.1: Frequency stability of the PHMs used for the GALILEO satellites in
terms of the ADEV. The picture was taken from a presentation of P. Rochat [89]
.

There are different kinds of effects which absorb into the clock solutions. Among
orbital perturbations and those that affect the signal propagation between satellite
and receiver station, there are relativistic timing effects. One of these is the general
relativistic redshift which is responsible for a difference in the elapsed proper time
of the clocks of two observers as discussed in 1.1.1. The integration of the redshift
components over a time interval covering one orbital revolution yields a handy ex-
pression for the relativistic time dilation, equation 1.19. This term explicitly relates
this timing effect to the eccentricity of the orbit of a satellite in a Keplerian setting.
For the GALILEO satellites, the different modeled relativistic redshift corrections
as well as the associated time dilation effect are subsumed in equation 4.2. One well
recognizes the inverse relationships between each of the different redshift correc-
tions and their independent variables - position and velocity - according to formula
1.11. As a result of the varying orbital eccentricity, a maximum peak modulation
of ≈ 370 ns over one orbital period can be read off the curve representing the time
dilation (see figure 4.2c). The Keplerian orbital elements describing the geometry
of the orbits of GSAT0202 and GSAT0201 are given in table 4.2. Since only their
orbit phasing is different by approximately 180◦, as indicated by the value of the
mean anomaly M , we also expect a constant phase shift in the redshift as well as in
the amount of other perturbations subjecting the satellites. The phasing difference
corresponds to an orbital period of ≈ 6.5h.

Satellite e a [km] i [deg] Ω [deg] ω [deg] M [deg]

GSAT0202 0.162 27977.6 49.7 52.521 56.198 136.069

GSAT0201 0.162 27977.6 49.7 52.521 56.198 316.069

Table 4.2: Keplerian elements of GSAT0202 and GSAT0201.
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Figure 4.2: Different relativistic redshifts over one orbital revolution. Picture 4.2d
shows the radial distance of the satellite with respect to Earth’s center over one day
as well as its velocity. The function plots in the first row show the gravitational
(4.2a) as well as the 2nd order Doppler shift (4.2b) corrections computed with the
real SP3 orbit solutions for satellite GSAT0202. Plot 4.2c demonstrates the total
relativistic time dilation according to 1.20. The colormap applied for the plots 4.2a
and 4.2b indicates the amount of redshift to be corrected for. Red labels higher
redshift, blue labels lower redshift.

The plots in figure 4.2 also indicate that the expected frequency shifts owing to
the single redshift components (4.2a and 4.2b) affecting the rate of the satellites’
clocks are larger than the frequency stability on orbital time scale as specified in
figure 4.1 above. Thus, the requirements for a precision test of the redshift under the
experimental settings realized with the help of the clock equipment of the GALILEO
satellites are met under the prerequisite that one uses clock data over a period
which matches the favored stability regime of approximately one day. The specific
relativistic redshift model to be tested is the integrand of equation 1.11. For the
potential U , we insert the following expression:

U = −GM⊕

r

(
1− J2⊕a⊕

2

r2

(
3z2

2r2
− 1

2

))
(4.1)

An assessment of the influence of higher order gravitational potentials of the Earth
reveals that the amount of expected relativistic redshift contributions are rather
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negligible, because their impact is beyond the sensitivity limit of the clocks. To
test the LPI, one conventionally introduces a test parameter α which quantifies a
possible violation of the modeled redshift:

∆f

f
= (1 + α)

(
−GM⊕

c2r

(
1− J2⊕a⊕

2

r2

(
3z2

2r2
− 1

2

))
+

v2

2c2

)
(4.2)

Before we continue with the fitting procedure based on that model 4.2, some prepro-
cessing has to be applied to the clock data beforehand. At first, we identify outliers
in the data sets based on the Grubbs criterion [49]. This criterion requires that the
data to be tested for outliers is approximately normal distributed. Therefore, a Chi-
squared test is carried out previously, in order to check whether the test is reasonable
or not. For the case that the Grubbs criterion is not fulfilled, we identify a data el-
ement as an outlier, if it is more than three standard deviations away from the mean.

Atomic clocks typically exhibit frequency drifts and their noise characteristics can
be described by specific stochastic noise processes. Motivated by the considerations
in section 3.2.1, we choose a time-dependent linear polynomial with real-valued coef-
ficients as a suitable model to describe the non-stochastic long-term behavior of the
clocks. It implies a bias value a0 and a linear drift parameter a1. For RAFSs another
quadratic drift parameter a2 is usually added. All these parameter values are also
typically contained in the GNSS navigation messages as broadcast ephemerides so
that each user can correct the clock bias and drift with respect to some reference
time (compare 3.22 and 3.23) which is conventionally given in some GNSS specific
time system. Thereby the quadratic factor is often omitted for PHMs or set to zero,
because it is negligibly small. In the following, these parameters are fitted in parallel
to the violation parameter for each day.

Before the satellites are launched into space, a frequency bias is applied to the
atomic clocks, in order to synchronize them with ground based reference clocks.
This constant rate component corresponds to the 2nd and 3rd terms in equation
1.15 and just depends on the altitude of the destination orbit and Φ0. Additionally,
the second-order Doppler effect and the eccentricity effect are considered. The latter
is typically very small for GNSS satellites that nominally fly on a nearly circular
trajectory. For geodetic or positioning purposes, though, this relativistic frequency
modulation component is applied to the clock data by default. Conventionally, for-
mula 1.20 is used for this purpose 4. However, this model is not appropriate for a
precision test of the relativistic redshift, because it is based on a Keplerian assump-
tion implying unperturbed satellite motion around Earth. We engage this issue by
introducing and applying two model corrections to the clock data. The first cor-
rection can be determined from the difference between the numerically integrated
expression 1.13 and the corresponding result from equation 1.20. For the evaluation
of the individual terms the orbit data of the respective satellite are needed. For this
we use the current precise orbit solutions from the SP3 files. The second correction
fixes the error which arises due to the omission of the quadrupole potential term
which is now included in the relativistic redshift model 4.1. The amounts of both
corrections are displayed in figure 4.3. The Fourier transformations of the prepro-

4https://gssc.esa.int/navipedia/index.php/Relativistic_Clock_Correction

Chapter 4 109

https://gssc.esa.int/navipedia/index.php/Relativistic_Clock_Correction


Test of General Relativity with GALILEO Satellites

cessed clock data, before and after the corrections have been applied, demonstrate
that the harmonics of twice the orbital frequency forb significantly reduce (see figure
4.4) which is very close to the 4th harmonic of the Earth’s rotation rate fday. In
addition to the higher order potential term mentioned above, the question arises
whether other contributions due to third body perturbations must also enter the
relativistic redshift model. We shortly outline the redshift contributions of the Lu-
nar and Solar tidal potentials. According to [127], each of these potentials UB can
be computed by:

UB = µB

(
1

|r− rB|
− 1

|rB|
− r · rB
|rB|3

)
(4.3)

Where r and rB are vectors with respect to the satellite and the third body in the
ECI frame. Table 4.3 indicates that the influence of the perturbing third body po-
tentials is rather small and hardly change the value of the relativistic redshift in
contrast to the other two redshift model corrections already mentioned. Therefore,
we disregard these effects with respect to our analysis.

Effect Peak-to-peak amplitude

Deviation from Keplerian orbit 80 ps

Gravitational redshift due to J2 30 ps

Gravitational redshift due to Moon 4 ps

Gravitational redshift due to Sun 2 ps

Table 4.3: Relativistic redshift due to other third body potentials.
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Figure 4.3: Both Keplerian and J2 corrections for GPS week 1979 applied to the
clock solution of satellite GSAT0202.
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Figure 4.4: Fast Fourier transformations of raw and differentiated clock data (4.4a
and 4.4b) after detrending and correction of systematic model errors. It is evident
that the 4th harmonic could be reduced significantly in both clock data sets after
the application of both Keplerian and J2 corrections. The fundamental frequency
here is the Earth’s rotation rate fday.
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The spectral analysis above (4.4) shows that both corrections constitute cru-
cial model enhancements that must be considered for a careful redshift analysis.
Therefore we take the integral of 4.2 as a fit function for α:

∆trel =

∫
dτ

[
−GM⊕

c2r

(
1− J2⊕a⊕

2

r2

(
3z2

2r2
− 1

2

))
+

v2

2c2

]
(4.4)

which rephrases the expression for the elpased time of the clock we already encoun-
tered in 1.11. Note that unlike the definition of α in Figure 1.1 in Chapter 1.1, the
equation 4.4 includes both relativistic effects. The complete fit function now reads:

fn (t, α, a1, a0) = (αn∆trel (t) + a1,nt + a0,n) (4.5)

where the index n runs over a number of points in time ti comprised by a linearly
spaced time vector x. We now adopt an ordinary Least-Squares method used for
estimation. The basic assumptions for an Ordinary Least Squares (OLS) fit imply a
linear function of the model predictors and a white noise model ϵG with expectation
value E [ϵG] = 0 as well as variance V [ϵG] = σ2 which represents the noise process
inherent to the clock data. An OLS estimate minimizes the mean-squared error:

argmin
β

N∑
n=0

(yn − fn (t, β))2 (4.6)

where β = (β1, . . . , βp) contains all p parameters to be estimated, yn represents the
sampled clock data and fn (t, β) is the linear function depending on these parameters
and the regressor values t. The data are re-sampled such that the index n runs over
the number of seconds of a day. In matrix representation the clock data model reads:

y = xβ + ϵG (4.7)

Taking the gradient of the mean-squared error with respect to the parameters and
making use of the necessary optimality criterion we get:

∇β
1

n
(y − xβ)T (y − xβ)

!
= 0 (4.8)

2

n

(
xTy + xTxβ

)
= 0 (4.9)

2

n
xT (y − xβ) = 0 (4.10)

2

n
xTe = 0 (4.11)

in equation 4.11, the error e = y − xβ is introduced which is to be minimized5.
Solving for the parameter vector β we obtain the Gaussian normal equations:

5In order to fullfill the equation, the error vector must be orthogonal to the regressor and
its expectation value must cancel out, i.e. that our problem formulation includes a number of
constraints, which equals the number of parameters to be estimated plus one (dim(β) + 1).
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β =
(
xTx

)−1
xTy (4.12)

However there is an issue with the applicability of the OLS method to the clock data
fit. Atomic clocks exhibit predominantly random noise ϵRW , or 1

f2 noise, which does
not comply with our assumption that the data is subjected to white noise. That
implies that the optimal Least-Squares estimate would not be unbiased, because
E [ϵRW ] ̸= 0:

E [β] = E
[(
xTx

)−1
xT (xβ + ϵRW )

]
(4.13)

⇔ E [β] = β +
(
xTx

)−1
xTE [ϵRW ] ̸= β (4.14)

An acceptable solution to this problem is the application of a noise transformation
prior to fitting the data. Random walk noise maps a Wiener process W which is con-
tinuous over time and has uncorrelated and stochastically independent increments6.
Its representation can be given in integral form:

ϵRW =

∫ t

0

dϵG (4.15)

In other words, differentiation of the clock data with underlying random walk noise
transforms into a data series, which is characterized by Gaussian or white noise ϵG.
The plots in 4.5 show the clock data before and after noise transformation. As a
consequence, the fitting model also changes to the integrand of 4.4, which is named
frel hereinafter, such that the fit function 4.5 and the corresponding mean-squared
estimator now translates to:

fn (t, α, a0) = (αnfrel (t) + a0,n) (4.16)

⇒ argmin
β

N∑
n=0

(yn − αnfrel (t)− a0,n)2 (4.17)

where we are left with a constant offset and the model for the frequency shift.

6White noise is independent of time, thus its power spectral density does not change and keeps
stationary PSD(ϵG) = const. On the contrary, a Wiener process is time dependent in a sense that
its variance drifts over time, i.e. it has Gaussian increments Wt+∆t −Wt ∼ N (0, ∆t). Therefore,
its power spectral density is not flat. The associated frequency spectrum can be computed as

PSD(ϵRW (t)) = PSD(ϵG)
f2 , which can be proven by a Fourier transform of expression 4.15 ϵRW =∫ t

0
dϵRW (t)

dt .
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Figure 4.5: Comparison of detrended and corrected clock data before and after
application of differentiation. In 4.5a one observes random walk noise predominating
the clock residuals in the time domain whereas 4.5b shows the same example data
set subjected to white noise in the frequency regime.

The inspection of the correlogram 4.6 of a sample time series suggests that the
differentiated clock data still contains significant first order serial correlation, which
we assume to be stationary. This is observed in all data sets that have been analyzed.
A parameter estimation in an OLS fashion as in 4.12, carried out with autocorrelated
data sets would thus turn out inefficient. The application of the Durbin-Watson-Test

-0.2

0

0.2

0.4

0.6

0.8

1
Sample partial autocorrelation

0 2 4 6 8 10

Figure 4.6: Autocorrelation computed from a sample clock data set. The horizontal
axis scales the lag space. Since there is obviously significant autocorrelation at lag
1, a first order autoregressive model (AR(1)) is chosen to correct the data series, i.e.
we presume each sample of the time series to linearly depend on its previous value.
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[17] additionally helps to confirm that the null hypothesis assuming no autocorre-
lation must be rather rejected. The Durbin-Watson test is used to identify whether
the sum of the differences of subsequent residuals have a significant amount or not:

d =

∑n
n=0 (et − et−1)

2∑n
n=0 e

2
t

(4.18)

According to this test, the values obtained from the sample sets are substantially
located in an interval between 0 and 2. Therefore, the assumption of positive auto-
correlation among the error terms is strongly supported. For OLS, it was assumed
that the residuals are perfectly white N (0, σ2) implying a constant variance for
all times, but this assumption is no longer valid when the model errors are not
uncorrelated. In order to overcome the model deficiencies, a Generalized Least
Squares (GLS) scheme is introduced. This helps us to reformulate the Least-Squares
approach such that the correlation is considered in the time series modeling. First,
we re-specify the error term appearing in formula 4.7, which should now capture the
underlying correlation. For this purpose we chose an AR(1) process7 denoted as

et = ρet−1 + ϵG (4.19)

where |ρ| < 1 is the correlation parameter of the subsequent delayed argument
et−1 which measures the strength of linear coupling to the present left-hand-side
value and ϵG models white noise characterized by ϵG ∼ N (0, σ2

ϵG
). Without loss of

generality we also set E [et] = 0, hence there is no other parameter to be estimated
than ρ. By regression of the vector et on et−1, which represents the time-shifted
values of the vector e (see 4.11) of the remaining residuals resulting from the OLS
method, the new correlation parameter ρ can be estimated. The according relation
for the Least-Squares estimate of this parameter reads:

∇ρ
1

n
(et − et−1ρ)T (et − et−1ρ)

!
= 0 (4.20)

2

n
eTt−1 (et − et−1ρ) = 0 (4.21)

ρ =
(
eTt−1et−1

)−1
eTt−1et =

∑n
i=2 et−1et∑n
i=2 e

2
t−1

(4.22)

Next, the covariance matrix of the AR(1) process 4.19 can be expressed from pairs
of lagged residuals:

7The differentiated clock data exhibit a noisy, but stable behavior and therefore one can assume
that the underlying process is Wide-Sense Stationary (WSS) requiring that its expectation E [et]
value and variance V [et] both do not vary with respect to time.
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Cov (et, et−k) = V =
σ2
ϵG

1− ρ2


1 ρ . . . ρt−1

ρ 1 . . . ρt−2

...
...

. . .
...

ρt−1 ρt−2 . . . 1

 (4.23)

For further reading about the treatment of disturbance processes and especially serial
correlation within time series, we refer the reader to [48]. The fraction in the above

formula 4.23 on the rhs is the variance of the AR(1) process denoted as V [et] =
σ2
ϵG

1−ρ2
.

This can be shown by a short calculation. In a first step, recursive back-substitution
into formula 4.19 is performed and consequently we take the variance of the back-
substitution result:

et =
∞∑
i=0

ρiϵGt−i
(4.24)

V [et] = E

[(
∞∑
i=0

ρiϵGt−i

)(
∞∑
i=0

ρiϵGt−i

)]
=

∞∑
i=0

ρ2iE
[
ϵ2Gt−i

]
(4.25)

V [et] =
σ2
ϵG

1− ρ2
(4.26)

For the step from 4.25 to 4.26 we make use of the identity of geometric series under
the above condition that |ρ| < 1. Note that the mixed terms in 4.25 vanish, since the
error terms ϵGt−i

are independent of each other. The single entries of the covariance
matrix can be induced systematically from the following relations:

Cov (et, et−1) = E [etet−1] (4.27)

Cov (et, et−1) = E
[(
ρet−1 + ϵGt−1

)
et−1

]
= E [ρet−1et−1] + E

[
ρet−1ϵGt−1

]
(4.28)

Cov (et, et−1) = ρE
[
e2t
]

= ρV [et] (4.29)

... (4.30)

Cov (et, et−k) = E
[(
ρet−1 + ϵGt−1

)
et−k

]
= E [ρet−1et−k] + E

[
ρet−kϵGt−1

]
(4.31)

Cov (et, et−k) = ρE [etet−k] = ρkV [et] (4.32)

Where the WSS property was used in the last step 4.32 (Cov (et, et−k) = V [et]) say-
ing that the covariance between samples with different time tags just depend on the
time-lag between these samples. As an aside, the time-lag governs the decay of the
covariance between different samples of the AR(1) process. For any pairs of samples

with covariance Cov (et, et−k) = ρkV [et], one finds from equating 4.32 with V [et] e
− 1

τ

a characteristic time constant of τ = − k
ln(ρ)

by comparison of the exponents. Finally,
we arrive at the new covariance matrix 4.23 and use it to transform the OLS model,
which then produces new values for our estimation parameters. After reformulation
of the underlying model equation 4.7, the Least-Squares model now reads:
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Ty = Txβ + Te (4.33)

with some transformation matrix T that can be obtained from the decomposition
T−1T = V. Replacing x by Tx in 4.12, we yield a new expression for our estimator:

βAR =
(
xTV−1x

)−1
xTV−1y (4.34)

whereas equation 4.34 represents the new estimator βAR, which contains our desired
violation parameter estimates and the bias for each day according to 4.5. In this
model, due to the noise transformation, the optimal Least-Squares estimate βAR is
now unbiased and the remaining noise reduces to white noise as was assumed in 4.7.
The day-wise results of the Least-Square fits of model 4.2 to each of the clock data
sets covering the time intervals given in table 4.1 are subsumed in figure 4.7.
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(b) Clock data set 2 results
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(c) Clock data set 3 results
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(d) Clock data set 4 results
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Figure 4.7: Results of daily violation parameter estimations for each clock data set
listed in table 4.1.
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Data anomalies and data fusion

As the results show, clock 5 reveals the most stable behavior, although some anoma-
lous observations can be identified around February 2017, which are the most promi-
nent among others in the data set. Figure 4.7d presents the fit results of the RAFS
data of satellite GSAT0202, which is of inferior frequency stability over the spe-
cific time regime of one orbital revolution in comparison to the other PHMs. For
that reason, we discard these results from our analysis. The results of clock 2 (see
figure 4.7b) exhibit strong drift behavior over the whole analysis epoch. From in-
ternal conversations with the subject matter experts from ESA, it was confirmed
that there have been persisting non-nominal operations flagged by the specific clock
unit throughout that period. We therefore also exclude that data from our analy-
sis. Among persisting anomalies, as experienced by PHM-B of satellite GSAT0201,
also sporadic events were reported by the redundant PHM-A unit of GSAT0201.
Table 4.4 sums up the events especially associated with the redundant clock, that
are responsible for any frequency anomalies during the corresponding time period.
Other than those events caused by operational changes, there was one radiation
event detected by both clocks PHM-B on GSAT0202 and PHM-A on GSAT0201,
which caused a frequency jump.

Event Occurance

Increase of clock cavity temperature 17-Sep-2015

SARANT antenna activation (current/temperature changes) 24-Oct-2015

Gyro activation (current/temperature changes) 07-Nov-2015

Radiation flare 11-Oct-2015

Table 4.4: Reported anomalies concurrent to the operations of PHM-A unit of
GSAT0201.

We finalize the data analysis by combining the independent α results per set.
Thereby, we apply inverse-variance weighting to calculate the optimal weighted av-
erage and the associated variance for each of the selected sets of estimated α pa-
rameters (see [52] for details regarding this approach). The optimal estimator for
the average α value can be computed as:

α̂ =

∑n
i=1

αi

σ2
i

V (α̂)
(4.35)

where V (α̂) is the variance:

V (α̂) =
1∑n

i=1
1
σ2
i

(4.36)

The final statistical results are summed up in table 4.5.
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4.2 Bayesian clock data post-processing

In this section, we employ a Bayesian post-processing scheme that is applied to the
α data sets produced, as described in the preceding section 4.1, to infer a combined
statistical result. From the data sets generated, we thereby focus on the data sets 1,
3 and 5 based on PHM data, since they exhibit the most reliable behavior through-
out the corresponding epoch as pointed out above.

A Bayesian framework helps to consistently estimate a combined statistical distribu-
tion from the data at hand to obtain the desired posterior from which we can derive
the final sample mean and the corresponding sample variance for the assessment of
the violation parameter α. Bayesian inference requires an initial hypothesis that
reflects accumulated knowledge about the data generating environment. We thus
need to identify prior information that might narrow down the statistical parame-
ter space. In particular, we will have a look at certain systematic effects potentially
influencing the satellites’ clocks performance and constrain their maximum contribu-
tion to a change in the estimated α value due to their effect on the clock’s frequency.

Bayesian inference is a handy tool when it comes to the interpretation of data B
in the case that some additional proposition or several hypotheses A can be thrown
about the data generating environment. Bayes theorem states the following:

P (A|B) =
P (B|A)P (A)

P (B)
(4.37)

The lhs describes the conditional probability that some statement A about the envi-
ronment is true given B, it is also called the posterior probability. The rhs states just
the inverse and is proportional to the probability function P (B|A) and the function
P (A) (prior probability) which is also called initial belief. We think of the rhs as
an update of the prior probability P (A), which can be computed with the help of
our measurement statistics produced by the environment P (B|A). If P (·|·) could
be modeled by a Gaussian distribution, A would describe the mean value, whereas
B would represent the current measurement distribution. The update then leads to
augmented knowledge about our initial hypothesis in that it describes the location
of the Gaussian mean somewhat more precise. Generally P (B|A) is not a proba-
bility distribution, it is often called likelihood. In most cases, there is only limited
knowledge about A, or it even cannot be observed directly, so that one starts with
only little information allowing a rough estimation about A. P (B) is the so-called
marginal likelihood and takes the same value for all possible propositions A. It is
the integral over all hypotheses P (B|A)P (A) =

∫ 1

0
dA (P (B|A)P (A)).

α±∆α (×10−5) Clock 1 Clock 3 Clock 5

Statistics -0.33 ± 0.6 8.13 ± 1.5 3.53 ± 0.5

Table 4.5: Final statistical results for the estimated α parameters of all considered
clock data sets.
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Lets demonstrate with a simple example the application of Bayes theorem. We
do a dice experiment and would like to find out whether the dice is fair or not.
When rolled, an ideal dice would give an equally likely chance that its upper face
shows any number of pips counting an integer between one and six. The experiment
should take a sequence of n = 120 dice rolls, where we expect that during the exper-
iment all faces show up approximately an equal number of times. The probability
that a particular integer number is realized after a couple of rolls is given by the
Binomial Distribution, which reads:

fbin (k|n, p) =

(
n

k

)
pk(1− p)n−k (k) (4.38)

This is now our likelihood function producing our measurements. For p = 1
6
, the

Binomial Distribution gives the maximum probability for 20 realizations of any
particular integer after the experiment has been done. Given that the dice is not
ideal, what would the result look like, if we cannot expect that p = 1

6
? Let us

assume we have a collection of random outcomes after a sequence of 120 dice rolls
and take this as our statistics for further investigations. For our hypothesis that
should explain the initial belief on how the probability parameter is distributed, we
take a Beta Distribution which is the conjugate prior of the Binomial Distribution:

fbeta (p|a, b) =
1

B (a, b)
pa−1(1− p)b−1 (4.39)

where B (a, b) is the normalization coefficient
∫ 1

0
dp
(
pa−1(1− p)b−1

)
. The Beta Dis-

tribution depends on two hyper parameters a and b which determine the shape of the
distribution. As starting parameters we choose a = 1 and b = 1. For these parame-
ters, the Beta distribution represents a linear polynomial revealing poor information
about the location of the real probability value. In dependence of the outcome of
each dice roll, the Beta Distribution parameters are then updated such that the
shape of the resulting curve converges gradually to the function, which correctly
describes the distribution of the current measurement statistics and the location of
the plausible probability value. In case of success, a is increased by one and b is
incremented accordingly for each failure. The product of the Binomial Distribution
4.38 and the Beta Distribution 4.39 gives us the desired posterior distribution:

fbin (k|n, p) fbeta (p|a, b) =

(
n

k

)(
pk+a−1(1− p)n−k+b−1

)
B (a, b)

(4.40)

fbin (k|n, p) fbeta (p|a, b) = B (a + k, b + n− k) (4.41)

fbeta
(
p|ā, b̄

)
= B (a + k, b + n− k) (4.42)

The product is thus again a Beta Distribution with a new set of hyperparameters.
Note that after normalization of equation 4.40 which results in 4.41 the constant
factors of both the Beta and Binomial Distribution cancel out.
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Figure 4.8: Evolution of the posterior probability distribution over 120 dice rolls.
The more often the experiment is done, the more precise becomes the localization
of the real probability parameter p. The blue curve shows the posterior after the
first trial with parameters a = 1 and b = 1, the other curves give the distributions
after {20, 40, 60, 80, 100, 120} trials. A gradually increasing red color saturation
level corresponds to later trials.

The Bayesian approach presented above is now applied to the problem of numer-
ically determining the combined sample mean and corresponding sample variance of
our α data sets (see Figure 4.7). For each data set, we build a Markov chain using
a Markov Chain Metropolis-Hastings (MCMH) algorithm to generate independent
draws from the desired posterior probability distribution fpost (µα|x1, x2, . . . , xn) of
the α sample mean µα. This is proportional to the joint probability of a likelihood
function flike and prior distributions π:

fi,post (µα|x1, x2, . . . , xn) ∝ fi,like (x1, x2, . . . , xn|τ1, . . . , τn) πi,τ1 · · · πi,τn (4.43)

where x1, x2, . . . , xn ∈ Xi are α data samples associated with one of the α data sets
{X1, X3, X5}. πi,τk denotes the candidate prior distributions used to determine the
shape parameters τk of fi,like. For example, common informative priors are normal
distributions π ∼ N (µ, σ), while in contrast, typical uninformative priors are flat
or uniform distributions π ∼ U (−σ, σ) with boundaries ±σ. Once the posterior is
found, we can then in turn use each of the resulting posterior distributions fi,post
to derive the combined sample mean and corresponding sample variance from a
combined posterior distribution. Before starting to draw data samples, we must
first define reasonable prior distributions, which should reflect information about
any systematics associated with the clock experiment. In conjunction with the like-
lihood function fi,like, we can then generate an update of the distribution for the
parameters being sought.

The algorithm 1 in section A.1 of the appendix A shows an MCMH algorithm
in detail. In anticipation of the output, a brief note on the Bayesian inference re-
sults and the resulting marginalized posterior distributions for all α data sets in A.2
should be highlighted here.
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4.2.1 Prior analysis

The atomic clocks of the Galileo satellites reside in a protected and controlled en-
vironment that stabilizes the frequency generation process. However, this process
is affected by environmental disturbances like temperature drifts and magnetic field
variations, which have an impact on the clock data from which we infer the statis-
tics of the violation parameter. In the following, the impact of both magnetic and
temperature perturbations is addressed. For a more comprehensive description of
systematic effects such that magnetic field perturbations affecting atomic clock tran-
sition frequencies, the reader is referred to [64].

As a basis for the quantitative evaluation of clock frequency changes due to tem-
perature or magnetic field strength variations, we refer to the pertinent technical
documentation [90]. In this article, the on-ground performance of both RAFS and
PHMs is described, whereby for our considerations we focus on the performance
specifications of the PHMs. The PHM specifications define, that the clock sensitiv-
ity due to temperature variations amounts:

∆f

f
= 2× 10−14∆T (4.44)

and the respective drift due to magnetic field strength disturbances reaches a sensi-
tivity of:

∆f

f
= 3× 10−13∆B (4.45)

4.2.1.1 Prior analysis: Magnetic perturbations

The atomic clocks feature a magnetic shielding that protects against magnetic field
perturbations. Satellites are magnetically noisy and can cause electromagnetic inter-
ferences due to satellite mission operations. Table 4.4 shows a list of events associ-
ated with operational activities like reaction wheel loading/offloading responsible for
abrupt changes in current flow on the spacecraft bus. This in turn generates electro-
magnetic disturbances at the location of the atomic clock depending on the magnetic
field attenuation due to the permeability of structural elements including satellite as-
semblies and finally the protective shielding around the atomic clock. Another source
of magnetic perturbations is the Earth’s magnetic field. We limit the investigation of
possible magnetic field perturbations to the modeling of the Earth’s magnetic field
due to the absence of supplementary measurement data. The magnetic field strength
is predicted by using the 12th generation of the International Geomagnetic Refer-
ence Field (IGRF) model [116] [115]. From consultation of mission data from the
Time History of Events and Macroscale Interactions during Substorms (THEMIS)
[8] satellite constellation, especially the THEMIS-A8 mission data, it can be vali-
dated that the model values produced by the IGRF deviates up to a maximum value

8The THEMIS-A satellite is one of 5 satellites continuously recording magnetic field data, in
order to explore the causes and properties of magnetic storms occurring in the magnetosphere.
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of 10% from the corresponding measurements, see figure 4.9.

Figure 4.9: Comparison of results from the 12th generation IGRF model and the
THEMIS-A mission data.

Note that this maximum deviation occurs for satellite altitudes that are beyond
the MEO regime, occupied by the GALILEO satellites, where the magnetosphere
is increasingly affected by interactions of the solar wind with the Earth’s magnetic
field. For a conservative estimation of the effect of the magnetic field acting on the
satellites’ clocks, their magnetic sensitivity is taken as uniform in all spacial direc-
tions, since no further details on the technical shielding specification are known9.
The frequency shift is now computed using 4.45, where we use the total magnetic
field strength in place of B, computed at the position of the spacecraft as given as
per SP3 file. This frequency shift is then added as a correction term to the frel,n
term in equation 4.17. Subsequently, the exact same fitting approach as above is
carried out to generate new α parameters for a certain data set. From these daily fit
parameters, we determine the overall weighted average and the associated standard
deviation for each clock data set. By taking the difference of the resulting and the
uncorrected α parameter values, one can now compute a correction |∆αB|. Since we
do not know whether the magnetic field correction is to be added or subtracted from
the according α value, we assume a uniform distribution π ∼ U (−∆αB,+∆αB) with
the parameter boundaries of −∆αB and +∆αB, whereas the correction amounts to
±∆αB = ±1.5× 10−5.

9The PHMs have a cylindrical magnetic shield assembly that protects the atomic clocks pre-
dominantly against magnetic field perturbations in radial direction, the symmetry axis is thereby
deemed most sensitive. A more accurate approach would require the correct values for the mag-
netic permeability to compute the proper magnitude of the magnetic field strength component
projected onto the symmetry axis.
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4.2.1.2 Prior analysis: Temperature perturbations

We further investigate temperature systematics of the PHM that also lead to fre-
quency shifts of the atomic clock according to relation 4.44. Thereby, we follow
the same approach as we did above for the identification of an α correction term
due to magnetic field systematics. In particular, we examine the transient thermal
behavior of the satellite’s PHM unit over one orbit, provided that the satellite is not
eclipsed during the orbital period. With the analysis, we not only aim at quantifying
the clock’s change in temperature, but also seek for a better understanding of the
phase relation between temperature systematic effects and the predicted redshift.
However this task is particularly challenging, since no temperature housekeeping
telemetry data are available for the satellite. For that reason, it is also not possible
to determine effective material parameters, which otherwise could greatly facilitate
a thermal analysis. Temperatures of the inside as well as the outside of the satellite
are typically used to derive intensive material properties as the effective conductivity
or emissivity of the spacecrafts bus structure. With these performance parameters,
one can characterize the process of heat transfer specific to that structure. Despite
that these essential information are not accessible, as far as the GALILEO FOC
satellites are concerned, we construct a conservative grey-box Thermal Mathemati-
cal Model (TMM) describing the heat transfer through the antenna bus panel into
the satellite’s clock compartment. For that purpose, we use official data from doc-
uments for the GALILEO IOV satellites [47], since their structural build up is very
similar to that of the GALILEO FOC satellites. Furthermore, the satellite layout
as found from the pictures and general thermal engineering guidelines for spacecraft
units (see [44]) are taken into account to get a reasonable picture on thermal de-
sign aspects. In addition, we complement these information with basic assumptions
about the satellite’s thermal environment. In this regard, we limit the factors of
influence to the total solar irradiation, the satellite experiences throughout its or-
bit. The fraction of Earth albedo or Earth infrared radiation is thereby neglected
for the reason of its marginal contribution in proportion to the direct solar radiation.

(a) (b)

Figure 4.10: The left picture shows the timing subsystem of the GALILEO satellites
10. The payload includes the RAFSs, which can be seen as grey boxes center bottom
on picture 4.10a, as well as the PHMs, which are placed next to them, center left.
The picture on the right is taken from [72] and helps to identify the location of the
clocks.
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The GALILEO satellites interior is split into 3 compartments as can be seen
from figure 4.10b, which we assume to be thermally isolated from each other. Each
platform component typically requires that its temperature control unit maintains
the operating temperature within acceptable limits. Both PHMs as well as the
RAFS and the Clock Monitoring and Control Unit (CMCU)11 belong to the timing
subsystem and are accommodated in one and the same compartment. We further
restrict any considerations regarding the thermal analysis to this control volume.
According to the Thermal Control System (TCS) design specifications, the lower
Tlb and upper Tup bounds of the nominal operating temperature range of the PHMs
read approximately Tlb = 268K and Tup = 283K. Moreover, the acceptable tem-
perature ranges of any neighboring electronic units are comparable to that of the
clocks. For the analysis, we choose an arbitrary set-point temperature of Tc = 278K
as a reference. From internal discussions with the ESA, it was revealed that the
temperature control unit, responsible for the PHMs, keeps this payload within a
temperature range of ±0.5K relative to the set-point value. Whenever this limit is
over- or undershot, the controller starts regulating the temperature. Thereby, the
time it takes for the TCS to bring the temperature down to the desired reference
value is 600s.

The clocks are assembled on aluminum shelves, also called doubler plates, which
are mounted on the clock panel. These provide typically high conductivity values
such that the heat received from that component is spread out by conduction and
mainly transmitted through the mounting panel as well as distributed throughout
the compartment by thermal radiation. Thereby, the effective surface area from
which the heat is then re-emitted, is designed depending on the heat generated by
the mounted unit. The more heat is produced by that unit, the larger the size has
to be choosen to obtain a better heat distribution performance. The application of
doubler plates thus avoids direct power dissipation via the components structural
footprint into the mounting panel. In order to make the temperature profile among
the electronic components in the compartment approximately uniform, a surface fin-
ishing with high emissivity properties is conventionally used for the compartments
interior. From picture 4.10a one can deduce that the GALILEO satellites have a
black paint (BP Z306, ϵ = 0.89) control coating applied to the internal face sheets,
representing the seperating layer between the panels honeycomb structure and the
interior of the clock compartment. Only the clock mounting panel is left as bare
aluminum. This layer is a typical sandwich element that covers the honeycomb
structure from both sides (see 4.11a).

For the thermal analysis, we conservatively model the PHM payload as one thermal
mass, distributed among the clock panel. Since no further information is available,
based on our reasoning above, we assume that this panel also acts as the main heat

11The CMCU belongs to the navigation timing subsystem and acts as the 10.23Mhz master clock
generator for the navigation payload/clocks, which is used for both the GALILEO satellites and
the IOV satellites. It is an interface that manages the selection and processing of all clock signals
(PHM and RAFS) and handles the distribution of its reference output signal. In case that the
input signal phase drift of a certain atomic clock exceeds predefined limits, the CMCU switches
seamlessly between the hot redundant clock stage, which is operating in parallel to the active main
clock unit. Technical details about the CMCU can be found in the technical data sheet [3] from
the manufacturer as well as in [39]
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sink in contrast to other compartment walls. The other panels, as the compartment
separation panel, are consequently expected to show a nearly adiabatic behavior,
such that the control volume effectively involves a configuration of three separate
components exchanging energy by radiative heat transfer: The compartment panel
with the antenna module attached, the clock panel and the adiabatic environment
consisting of the remaining panels of the enclosure.

The satellite bus structure is composed of honeycomb, overlayed by a MLI blan-
ket, where the latter forms the outermost thermal protection and boundary layer
to space. Honeycomb panels are constructed by an array of closely spaced hexag-
onal cells made from an aluminum alloy (Al5056) with a characteristic thickness.
This core material is of low density and therefore strongly limits heat transport by
conduction. In addition, the contribution of heat transfer by conduction perpen-
dicular through the honeycomb panel significantly exceeds heat transfer in lateral
direction. The core panel is also covered by face sheets also made from aluminum
alloy (Al2024 T81), which are connected through adhesives with the core panel. We
stick to the assumption that both layers of face sheets are black-painted, except for
the sheet covering the clock panel, which was identified to consist of bare aluminum.
Picture 4.11a shows a 3D model of a honeycomb slab with black-painted face sheets.

MLI blankets consist of multiple different layers that fulfill several thermal design
requirements. On the one hand, MLI should prevent the spacecraft from excessive
heating during periods of Sun exposure, on the other hand, it should minimize heat
loss through the satellite’s boundaries to the deep space environment. Picture 4.11b
shows the systematic lay-up of the external MLI as used for the GALILEO satellites.
The outside of the first layer, facing deep space, is made of black-painted Kapton.
For the interior of the spacecraft, we argued that black-painted surfaces enhance
radiation exchange and maintain a uniform temperature, for the outer-cover the
main design driver is electrostatic discharge compatibility, i.e. the surface must pro-

(a)

(b)

Figure 4.11: Artificial representation of an aluminum based honeycomb structure
with one side being black-painted and the other side featuring a bare aluminum face
sheet (4.11a). The thickness of the honeycomb structures used for the GALILEO
satellites range from 3cm to 5cm. The cell size amounts Lcell = 3/16” (4, 8mm).
4.11b shows the lay-up of the external MLI sections.
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vide charge balance and prevent from surface potential buildup. Despite that the
absorption properties of black finishes typically lead to significant heating during
Sun exposure, the characteristic α

ϵ
ratio of Black Kapton still ensures a balanced

thermal behavior. To fit the thermal requirements, Mylar polyester film layers are
laminated with low emissivity Vacuum Deposited Aluminum (VDA)-films in order
to minimize heat exchange by radiation between the inner MLI layers. In addition,
Dacron spacer are placed between the Mylar layers to minimize the effective contact
area for heat exchange by conduction.

Since no further effective material properties are given for the honeycomb material,
we employ a fully coupled TMM to describe the radiative heat transport within the
single cells of the honeycomb structure. For the purpose of ease, we approximate
the geometry of the hexagonal cells as cylinders with a radius rc derived from the
cell size rc = Lc/

√
3. This facilitates the computation of view factors describing the

geometrical radiative coupling between the surfaces involved as we will see below.
In order to properly model also the radiative exchange between individual surfaces
within the cells, the honeycomb core structure is further subdivided into a number
of additional layers. For reasons of computational efficiency, we define a total of 5
layers (1× face sheet, 3× bulk material layer and 1× face sheet) to map these effects.

For diffuse-grey surfaces, radiation exchange between a surface element i in a closed
environment of N individual, isothermal area elements is governed by the following
equation:

Qij =
N∑
j=1

FijAiϵijσsb

(
T 4
i − T 4

j

)
(4.46)

where FijAi in 4.46 is often described as a geometrical radiation resistance. It is a
measure of how much radiation flux can pass from one surface Ai to another surface
Aj and is driven by the view factor Fij. The matrix ϵij is the effective emittance (see
[56], [87] for a detailed view on the derivation). Note that in contrast to black bodies
absorbing any incoming radiation, grey-diffuse surfaces emit and reflect incoming
radiation. Thereby, optical material parameters of grey bodies do not change with
the wavelength of the radiation and the emission pattern is direction independent.

The view factor evaluation is computational intensive and heavily depends on the
shapes and the geometrical arrangement of the surfaces involved. Mostly, view fac-
tors are computed numerically and several implementations have been adopted for
that purpose (see [46] and [23] for details on the Hemicube method as integrated in
the FEM framework ANSYS or [123] and [51] for details on Monte Carlo method
based view factor evaluation approaches). The definition of the view factor integral
is given by:

F12 =
1

πA1

∫
A1

∫
A2

(cosα1 cosα2

r2

)
dA1dA2 (4.47)

where A1 and A2 correspond to the area elements viewing each other under the an-
gles α1 and α2 relative to their surface normals and placed at a distance of r apart
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(a) (b) (c)

Figure 4.12: Visualization of the different geometrical arrangements relevant for the
view factor computation.

from each other. In the following we present several kinds of view factors.

Analytic forms of several specific configuration factors are well tabulated and can
be found in the literature (see [38] [21] and [62]). The configuration factors between
two parallel discs, Fdd, can be computed by:

Fdd =
1

2

2R2 + 1

R2
−

√(
2R2 + 1

R2

)2

− 4

 (4.48)

where R = r
a

is the ratio of the discs radius to the distance a of the two discs. As
next, the configuration factor between the interior surface of a cylindrical section
and a coaxial disc, Fcd, with equal radius placed at a certain distance from that
geometry is considered:

Fcd =
1

4

((
1 +

H2

H1

)√
4 + (H1 + H2)

2 − (H1 + 2H2)−
H2

H1

√
4 + H2

2

)
H1 =

h1

r
(4.49)

H2 =
h2

r

In the above equation 4.49, h1 is the height of the cylindrical section and h2 cor-
responds to the distance from the base of that element to the bottom disc of a
neighboring cylindrical section (see picture 4.12b). r denotes the radius of both the
section and the disc.

Finally, the view factor between two neighboring sections of coaxial, cylindrical
shells, Fcc, can be obtained by:
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Fcc =
1

4 (L3 − L2)
(2L1 (L3 − L2) + (L3 − L1)X (L3 − L1)

− (L2 − L1)X (L2 − L1)− L3X (L3) + L2X (L2)) (4.50)

L =
l

r

X (L) =
√
L2 + 4

where L in equation 4.50 is associated with the different distances that determine
the geometrical size and spacing of the arrangement, see figure 4.12c, and r denotes
the common radius of the coaxial, cylindrical sections. Note that in the three ana-
lytic solutions above for the configuration factor integrals, the radius r is actually
the cell radius rc, as defined before.

As next, we compute the configuration factors that present the fractions of dif-
fuse radiation exchanged between the different surface elements within the timing
system compartment. Picture 4.13 gives a schematic view on the enclosure. Fol-
lowing the reasoning above, we model the enclosure as an effective three-element
enclosure. The according view factors needed are summed up in table 4.6.

Antenna panel(ap) Clock panel(cp) Adiabatic
walls(aw)3

Antenna panel Fap→ap = 0 Fap→cp = 0.268 Fap→aw = 0.732

Clock panel Fcp→ap = 0.170 Fcp→cp = 0 Fcp→aw = 0.830

Adiabatic walls Faw→ap = 0.166 Faw→cp = 0.296 Faw→aw = 0

3 Aap = 0.84m2, Acp = 1.32m2, Aaw = 3.70m2

Table 4.6: Configuration factors computed for the simplified three-element enclosure.

In table 4.6, we make use of the following relations for view factors considered
in enclosures, which reduces the total number of integral evaluations to only one:

Fij = Fji
Aj

Ai

(4.51)

1 =
N∑
j=1

Fij (4.52)

The net energy transfer as described in 4.46 from the antenna panel to the clock
panel can be written as:
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Figure 4.13: Schematic view on the spacecrafts timing system compartment. The
dimensions of the box are 0.7 × 1.2 × 1.1 [m3] (X × Y × Z). The magenta colored
surface is considered the antenna mounting panel through which incoming radiation
is exchanged with the enclosure. Note that due to the special attitude of the space-
craft, the other cyan colored surfaces do not receive heat from the outside. The
green area element features the separation panel to the neighboring spacecraft com-
partment. The cylindrical shape within the box demonstrates the location of the
clock. Below this element, the clock’s mounting panel is located, which is treated
as the main heat sink of the enclosure.

Qap =
σsb

(
T 4
ap − T 4

cp

)
1−ϵap
ϵapAap

+ 1
R

+ 1−ϵcp
ϵcpAcp

(4.53)

R =
1

1
AapFap→aw

+ 1
AcpFcp→aw

+ AapFap→cp (4.54)

We can now set up the TMM to compute the transient behavior of the thermal mass
located in the interior of the enclosure. Thereby, every uniform surface, e.g. a face
sheet or the MLI, is modeled as a separate node, which exchanges radiation with its
direct environment and consequently has one temperature degree of freedom. This
directly implies that each surface involved in radiative heat exchange is considered
isothermal. A surface node can receive or emit heat only from and to its neighboring
nodes. The material properties implied by the TMM are summed up in table 4.7.
For the sake of simplification, the model reflects that heat exchange by radiation
dominates any other heat transport mechanisms such as conduction. From energy
conservation, the enthalpy rate of change of the node representing the outermost
spacecraft layer is given by:
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ρ1Aapd1c1
dT1

dt
= (αP⊙Aap) cos θ (t)−σsbϵMLIAap

(
T 4
1 − T 4

DS

)
−σsbϵ

∗
MLIAap

(
T 4
1 − T 4

2

)
(4.55)

In the heat balance equation 4.55 for the first node, the subscript HC stands for
honeycomb, as we assume that this node is directly coupled with the MLI-node via
radiative heat exchange. The first term on the rhs denotes the portion of incoming
solar irradiance, which varies with the Sun elevation θ with respect to the satellite
body-fixed system and is evaluated prior to the start of the solution process for the
thermal model. In addition, an absorptivity of α = 0.94 is used for the BP Z306
coating. The second term governs the radiation power exchange with the space
environment, where TDS = 3K labels the deep space temperature. Note that all
structural dimensions and material parameters influencing the change of internal
energy are MLI related. The ϵ∗MLI parameter defines the effective emissivity12 that
was measured for the exterior MLI blankets for the IOV satellites in a vacuum
test, whereas ϵMLI specifies the emissivity of the outer surface. For the five nodal
equations governing the thermal energy exchange within the honeycomb structure,
we write:

ρiAapdici
dTi

dt
= σsbϵ

∗
MLIAap

(
T 4
1 − T 4

i

)
+ Ncell

N+2−1∑
j=2

FijAiϵijσsb

(
T 4
i − T 4

j

)
(4.56)

ρi+1Aapdi+1ci+1
dTi+1

dt
= Ncell

N+2−1∑
j=2

Fi+1jAi+1ϵi+1jσsb

(
T 4
i+1 − T 4

j

)
(4.57)

...

The first term in 4.56 on the rhs is just the contribution from the first node and the
sum explains the heat energy interchange within the honeycomb structure, which is
interdependent on all participating layers (N = 5). The Ai under the sum quantifies
the size of an individual area element of a cell - the area of a disc, or the area of a
cylindrical section - and the corresponding configuration factor Fij accounts for the
geometrical arrangement of that area element with respect to the set of all other sur-
rounding, visible surface elements that form an enclosure (see pictures 4.12a, 4.12b
and 4.12c). The multiplication of the sum by the total number of cells Ncell then
gives the total net energy transfer between all involved cell areas establishing the
subdivision layers j and a layer i. The view factors Fij have been computed with the
help of the view factor integral solutions 4.48 to 4.50. For i = 1 and i = 5, net heat
transfer between the top and bottom cell sides and cylindrical sections is addressed
- where their sum13 actually constitutes the total area of a face sheet side -, where

12The effective emissivity generally depends on the total number of sheets/films of a MLI and
is a technical measure for the quality of heat flux going through the layers by means of a certain
temperature difference.

13As described in table 4.6, the antenna panel side of the timing system compartment amounts
Aap = 0.84m2.
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the other indices indicate the contribution of net heat transfer among individual
cylindrical sections.

Starting with the energy balance of the last node given by equation 4.57, the nodal
equations defining the heat transfer within the compartment and beyond its bound-
aries through the clock mounting panel read:

ρ6Aapd6c6
dT6

dt
= Ncell

N+2−1∑
j=2

F6jA6ϵ6jσsb

(
T 4
6 − T 4

j

)
− σsb (T 4

6 − T 4
7 )

1−ϵap
ϵapAap

+ 1
R

+ 1−ϵcp
ϵcpAcp

(4.58)

ρ7Acpd7c7
dT7

dt
=

σsb (T 4
6 − T 4

7 )
1−ϵap
ϵapAcp

+ 1
R

+ 1−ϵcp
ϵcpAcp

− σsbϵcpAcp

(
T 4
7 − T 4

i+7

)
(4.59)

ρiAcpdici
dTi

dt
= σsbϵcpAcp

(
T 4
7 − T 4

i

)
+ Ncell

N+8−1∑
j=8

FijAiϵijσsb

(
T 4
i − T 4

j

)
(4.60)

ρi+1Aapdi+1ci+1
dTi+1

dt
= Ncell

N+8−1∑
j=8

Fi+1jAi+1ϵi+1jσsb

(
T 4
i+1 − T 4

j

)
(4.61)

... (4.62)

ρ12Acpd12c12
dT12

dt
=

N+8−1∑
j=8

F12,jA12ϵ12,jσsb

(
T 4
12 − T 4

j

)
− σsbϵ

∗
MLIAcp

(
T 4
12 − T 4

13

)
(4.63)

ρ13Acpd13c13
dT13

dt
= σsbϵ

∗
MLIAcp

(
T 4
12 − T 4

13

)
− σsbϵMLIAcp

(
T 4
13 − T 4

ext

)
(4.64)

dT7 (t)

dt
=


Q (t)ap − σsbϵcpAcp

(
T7 (t)4 − T8 (t)4

)
ρ7Acpd7c7

if T7 ≥ Tc ± 0.5K (4.65)

−T7 (t)− Tc

tp − tc
else (4.66)
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Material MLI Honeycomb
(Al5056)

Face sheet
(BP Z306)4

/(Al2024
T81)5

PHM

Density
ρ
[
kg
m3

] 38.67 32.04 2780 642.866

Specific heat

c
[

J
kgK

] 1290 904 875 494

Emissivity
ϵ/ϵ∗

0.897/0.0118 0.09 0.89/0.09 0.15

Thickness
d [m]

0.02 0.03 0.0005 0.01

4 BP Z306 used as a functional coating facing the inside of the clock module compartment 5 Bare
material 6 The clock’s volume is approximately 18l 7 Surface emissivity 8 Effective emissivity

Table 4.7: Material parameters used for the thermal analysis.

The set of equations 4.61 to 4.64 simply follow the reverse logic of equations 4.55
to 4.57, which describe heat transfer from the cold side (deep space) to the hot side
(spacecraft interior) through the full antenna panel, modeled as a sandwich element
composed of honeycomb and MLI. Note that the clock mounting panel size Acp

is applied, which has a bigger size than the antenna panel Aap. The function 4.65
and 4.66 actually substitutes equation 4.59. This function simulates the spacecrafts
temperature control mode for the timing subsystem and adjusts the temperature of
the lumped payload mass in our thermal model to reach the set-point value after
a time interval of tp = 600s, if the temperature change exceeds the predefined
limit of Tc ± 0.5K. Tc stands for the set-point temperature and tc is the elapsed
time period since the last activation of the control mode. Before the system of
differential equations is integrated over the time span of two orbital periods, initial
conditions are provided. The temperatures for the first and last nodes are chosen to
be 90K, which is close to the temperature limit of the external MLI according to the
technical specifications used in this context [47]. For the other nodes the nominal
set-point temperature (278K) is applied.
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Figure 4.14: Results of the thermal mathematical model. The curve with the largest
amplitude renders the MLI surface temperature profile. It nearly reaches its equi-
librium temperature after approximately 10h and bottoms down to 70K before the
next Sun illumination cycle starts.
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Figure 4.15: Results of the thermal mathematical model. 4.15a shows the tem-
perature profile of the payload and its neighboring nodes, while 4.15b pictures the
temperature profiles of the nodes representing the adjacent honeycomb layers.
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In equation 4.64, for Text we use the relation:

Text = 4

√
T 4
i

ϵ
ϵ∗MLI

+ 1
(4.67)

which expresses the external surface temperature of the MLI in dependence of the
internal surface temperature, provided that the effective emissivity ϵ∗MLI and the
surface emissivity ϵ is given. This formula follows from the consequences of energy
conservation by means that all heat transferred through the MLI bulk material must
be emitted from the exterior surface into deep space (see [88] for details). The re-
sults of this TMM are shown in figures 4.15a and 4.15b. The red line in the former
plot shows the nodal temperature profile representing the PHM payload, while the
other lines represent the temperature evolution of neighboring nodes. The blue lines
describe the nodes for the last honeycomb layer (Layer 4) and its face sheet (FS),
where the black line corresponds to the node featuring the face sheet of the mount-
ing panel of the clocks. Figure 4.15b also shows the gradual temperature drop due
to the individual honeycomb layers that attenuate the thermal radiation passing
through the antenna panel.

We can now determine a correction term |∆αT | for the violation parameter α fol-
lowing the same logic as introduced for the treatment of the magnetic field related
systematics. For that purpose, we add the frequency shift term 4.44 to the func-
tion frel,n term in equation 4.17 and compute a new αT . For the ∆T we plug
in the payload temperature profile for the corresponding epoch. For the correc-
tion we then obtain ±∆αT = ±1.9 × 10−5. The prior distribution thus denotes
π ∼ U (−∆αT ,+∆αT ).
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Figure 4.16: Distribution of SLR stations over the globe consolidating the
International Laser Ranging Service (ILRS) networka.

ahttps://ilrs.gsfc.nasa.gov/network/stations/index.html

4.2.1.3 Prior analysis: SLR statistics

The ILRS coordinates and administrates SLR observations of artificial Earth-bound
satellites and Lunar Laser Ranging (LLR) observations generated by SLR and LLR
stations distributed all over the globe. SLR data are made accessible by the ILRS
via their web page14. The ILRS supports a wide range of fields such as geodesy as
well as scientific applications which require highly accurate observations for precise
positioning purposes. Especially for the gravitational redshift experiment with the
GALILEO satellites, a dedicated campaign was launched to intensively track the
satellites over a time span of one year starting from May 1st, 2016. Over that time
period an increased number of SLR observations were collected over seven days from
the beginning of each month. Whenever any of the two satellites were within the
measurement range to any SLR station, one or two normal points15 were gener-
ated every 50 minutes for that satellite16. These measurements, which are primarily
different from pseudo-range observations or other conventional GNSS observations,
were used to calibrate the orbit products (precise ephemeris data) and validate their
accuracy. SLR data are provided as one-way range residuals representing ”observed
minus calculated” values, usually expressed in cm. They are constructed from dif-
ferences of SLR range measurements and corresponding range results that can be
obtained from POD solutions. This already hints at their special usefulness: In
a similar fashion to clock residuals, they allow for the independent assessment of
deficiencies associated with orbit or clock modeling. Larger SLR residuals indicate
major systematic errors in the models, while as long as the modeling is perfect, the

14https://ilrs.cddis.eosdis.nasa.gov
15https://ilrs.cddis.eosdis.nasa.gov/data_and_products/data/npt/npt_algorithm.

html
16For more information on the trackings statistics: https://ilrs.cddis.eosdis.nasa.gov/

missions/GREAT_exp_stats.html
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Start Date End Date Days included Number of samples

GSAT0201 05-Dez-2014 16-Dez-2017 1107 10129

GSAT0202 27-Mar-2015 16-Dez-2017 995 7454

Table 4.8: Satellite laser ranging statistics.

residuals should cancel out. To transform SLR residuals into clock residuals, one
requires dividing them by c. The equivalence of SLR residuals and clock residuals
suggests that they can be leveraged to derive ∆αSLR corrections for our daily α
fits, thus also providing suitable constraints on the statistical parameter space for
our Bayesian analysis to derive the marginalized posterior. To compute the cor-
rections, the parameter estimation scheme as explained in chapter 4.1 is used to
fit the SLR residuals to our redshift model. Based on the ∆αSLR statistics thus
obtained, we then determine both the sample mean and variance for each clock data
set. This eventually can be used to define normally distributed priors for each data
set as π ∼ N (µ∆αSLR

, σ∆αSLR
). Since the total amount of SLR data per day is very

sparse, so that there are not always enough samples for a day-wise fit, as is the
case for the clock residuals, it is not possible to obtain reasonable daily corrections
based on our standard Least-Squares approach. Therefore, the ∆αSLR parameter
estimation is done globally. The total number of SLR data points used for param-
eter estimation includes a total of 17583 measurements. Table 4.8 summarizes the
SLR sampling statistics for each of the two satellites. The global Least-Squares fit
result can be found in table 4.9.
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Figure 4.17: The plots show the density of SLR measurements over one GALILEO-
specific orbital period. The argument is given in seconds and the vertical axis gives
the SLR residual value in meters. The SLR residuals measure the divergence be-
tween direct observations and orbit determination results. From the comparison of
both plots one recognizes how the SLR measurement coverage is distributed over the
specific satellite orbits. Due to the phasing of the satellites, which is approximately
180◦, in times where GSAT0202 can be tracked more frequent, less GSAT0201 ob-
servations can be performed.

Chapter 4 139



Test of General Relativity with GALILEO Satellites

4.3 Results

Table 4.9 and figure 4.19 sum up the preceding considerations regarding the violation
parameter estimates giving the potential uncertainty for the combined gravitational
and relativistic Doppler redshift effect. In terms of accuracy, we essentially reflect
the state of the research published by Hermann et al. [53] in 201817. Although the
locations of the statistical means differ somewhat from the results in the article,
the standard deviations of all posterior distributions per clock data set still agree
well with the results. It should be noted that the earlier study presented in the
article underestimates the systematic effects owing to the specific frequency sensi-
tivity of atomic clocks to magnetic field perturbations. Based on the recent findings
obtained throughout the present study, the potential corrections for the estimated
value of the violation factor α constrain a wider interval of ±∆αB = ±1.5 × 10−5

instead of ±∆αB = ±0.8×10−5. The corrected marginalized posterior distributions
can be found in figure 4.19. For direct comparison, the marginalized posterior dis-
tributions calculated based on the old ∆αB value are shown in Figure 4.18. The
discussion of the daily α fits presented in 4.7 suggests that the results from the clock
5 data set prove to be the most reliable, largely due to the underlying clock stability
and pervasive absence of outliers. This gives reason to focus on the results that
emerge from the analysis of this data set. Compared to the final α estimate from
the original study given by α = (2.2± 1.6)× 10−5, we present an updated value of
α = (2.01± 1.76) × 10−5, which still implies a 4-fold improvement as compared to
the final GPA result of 7× 10−5 given in [120]. If we consider only the gravitational
redshift in our violation model, we obtain a result of 5.56 ± 3.4 × 10−5, improving
the accuracy by a factor of four relative to the GPA result of 1.4 × 10−4 published
in [121].

17The study was supported by both the ESA project GREAT (General Relativity Experiment
with Galileo Satellites 5 and 6) and DLR in the RELAGAL project (RElativistic experiments with
GALileo satellites). As part of the GREAT project, a parallel study by Delva et al. [31] was
published in the same issue, in which an independent statistical analysis was performed based on
the same clock data.

α±∆α (×10−5) Clock 1 Clock 3 Clock 5

Days included 409 153 508

Statistics -0.33 ± 0.6 8.13 ± 1.5 3.53 ± 0.5

SLR statistics -2.2 ± 0.5 -8.1 ± 0.9 -1.5 ± 0.9

T statistics 0 ± 1.9 0 ± 1.9 0 ± 1.9

B-field statistics 0 ± 1.5 0 ± 1.5 0 ± 1.5

Posterior statistics -2.53 ± 1.66 -0.03 ± 2.27 2.03 ± 1.76

Table 4.9: α posterior statistics (statistical sample mean and uncertainties).
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Figure 4.18: Marginalized posterior distributions for all clock data sets including
the combined posterior in the lower right corner. The B-field statistic enters with
a sampling variance of 0.8 × 10−5. The uncertainty relates to the highest posterior
density interval including 68% of the data and is visualized by the dashed lines in
the plots.
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Figure 4.19: Revised marginalized posterior distributions for all clock data sets
including the combined posterior in the lower right corner. In contrast to the results
in figure 4.18, the B-field statistic enters with a sampling variance of 1.5 × 10−5

instead of 0.8×10−5. The uncertainty relates to the highest posterior density interval
including 68% of the data and is visualized by the dashed lines in the plots.
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CHAPTER 5

Summary and Outlook

This work deals in essence with the verification of the general relativistic redshift as
it can be predicted by the application of special relativity and the equivalence prin-
ciple of general relativity. Reason for this occasion, at least from a scientific point
of view, was the lucky happenstance that the two GALILEO satellites GSAT0202
and GSAT0201 were directed into eccentric orbits owed to a technical malfunction.
As a result, the satellites with their high-precision atomic clocks have since been
periodically passing through different altitudes in the Earth’s gravity field, resulting
in a periodic frequency modulation due to time dilation effects that are eventually
detected by the atomic clocks. Based on numerous series of satellite observations
of GSAT0202 and GSAT0201 covering a total period of about 1000 days, clock so-
lutions were generated, which have been tested for a possible redshift violation on
a day-by-day basis under the application of a statistical analysis. As a final result
for the combined gravitational and relativistic Doppler redshift effect, we receive
α = (2.01± 1.76) × 10−5. If we consider only the gravitational redshift in our vio-
lation model, we obtain a result of 5.56± 3.4× 10−5, which exceeds by 4 times the
accuracy compared to the GPA result of 1.4 × 10−4 published in [121].

The modeling of systematic effects generating a similar signature or periodicity as
that of the redshift is a key component of this study, which we consider in more
detail from two different perspectives. First, we attempt to model and constrain
the effects of temperature variations and perturbations from the Earth’s magnetic
field, which are expected to directly affect the accuracy of the atomic clocks. This
eventually helps to better understand the resulting measurement limitations of the
atomic clocks and to derive combined measurement uncertainties for the α esti-
mation. Second, we address the modeling of orbit perturbations, which are a key
factor for the quality of clock solutions, and ultimately predefine the accuracy of the
redshift test. Chapter 4 addresses the impact of clock-specific systematics such as
temperature and magnetic field effects on the accuracy of the statistical violation
parameter estimates, while chapter 3 focuses on modeling SRP perturbations.

Although there has been quite some progress in the field of SRP modeling and
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technical information on the physical and technical GALILEO FOC satellite char-
acteristics has been published in favor of pertinent studies, there is still room in
the interpretation of the effects of radiation-induced perturbations. To discrimi-
nate between the causes of these effects as accurately as possible, we introduce a
FE-based SRP model that, unlike conventional a-priori models, also accounts for
self-shadowing effects. We show in a simplified orbit determination framework the
performance improvement over a FE box-wing model by means of a parameter esti-
mation procedure based on observation data spanning a period of almost one month
and recorded from more than 80 MGEX stations worldwide. For the purpose of
comparing the two models, we use the ECOM1 as an empirical parameter setup.
Thirty-day orbital simulations were also used to show that the application of an
empirical ECOM1 model leads to larger deviations than are obtained by means of
an additional analytical model, in this case the high-fidelity FE model. Using orbit
simulations, it was also demonstrated (see Figure 3.30) that the exclusive use of an
empirical ECOM1 model results in a larger difference with respect to precise orbit
solutions when compared to using an additional analytical model, in this case the
high-fidelity FE model.

It has been been found that the use of an advanced semi a-priori SRP model can sig-
nificantly enhance the quality of the clock data (see Figure 3.31), assisting precision
tests such as those described here. The advantages that may arise from an analytical
treatment of SRP also inspire to apply the concept to the analytical modeling of
TRP effects, and we would like here to give a brief outlook on the methodological-
technical foundations that have been developed in the context of a conceptual design
study:

Other than SRP, which emanates from the interaction of radiation from an ex-
ternal source with an objects surface, thermal radiation pressure results from the
transfer of momentum due to the radiation emission behavior an object’s surface.
Hereby, this effect just depends on the surface temperature distribution. The recoil
force caused by TRP is given by (see also [88] page 19):

Ftrp = − 2

3c

(
ϵσsbAT

4
)
n (5.1)

The steps required to construct a FE-based TRP model are related to those men-
tioned in the 3.3.3.2 section. The building process was also carried out in APDL.
In a similar manner to the discussed modeling approach used to construct a high-
fidelity GMM for modeling SRP, an analogous FE approach can be used to construct
a volumetric GMM as a basis for a full thermal transient analysis from which the
overall satellite surface temperature distribution can be derived, which is expected
to evolve over an orbit. For a given FE solution or resulting temperature distri-
bution, the calculation of the recoil force according to equation 5.1 can then be
expanded to an element-wise form analogous to 3.106, where for each nth element
the temperature Tn extracted from the distribution must be substituted to obtain
the resulting TRP force or acceleration Ftrp,n. Before one can solve for the heat
distribution on the satellite FEM, initial and boundary conditions as well as heat
loads must be defined and applied to nodes (with one thermal degree of freedom),
surfaces (heat flux etc.) or volume elements (heat generation, thermal flux etc.) of

144 Chapter 5



Test of General Relativity with GALILEO Satellites

the corresponding FE mesh. In addition, following the discussion in section 3.3.3.2,
it is useful to identify surface elements on the mesh that experience self-shadowing,
potentially altering the heat load distribution through the local reduction of heat
flux, which in turn depends on the corresponding illumination scenario (as an ex-
ample 3.20) and the associated satellite-Sun orientation. Ultimately, the resulting
TRP-generated force can be calculated based on the thermal distribution results.

The GMM requires a parametric solid model consisting of volume and surface el-
ements 5.1a. This satisfies the requirements for modeling in-plane and through-
thickness heat conduction processes, as well as modeling the effects of radiative heat
transfer phenomena. Although the external geometry of the satellite is sufficiently
known, official information about the inner structure is still largely unknown, as are
many of the thermal material parameters necessary to uniquely characterize heat
transfer properties, as already noted in section 4.2.1.2. Therefore, the resulting
TMM concept is limited by the assumptions made in that section. For demonstra-
tion purposes the results of a steady-state thermal simulation using the proposed FE
mesh is shown in figure 5.1d. An initial temperature of 293.15 K◦ was chosen for the
interior of the satellite for performance testing purposes (this is near the nominal
operating temperature of the atomic clocks), while the temperature of outer space
was fixed at 3 K◦. In the plot, the space radiators and the underlying structure on
the Y-face of the satellite model are hidden, giving a view into the compartment.
The red color indicates the compartment’s reference temperature set as a boundary
condition. Prior to the solution, surface loads were applied to all surface elements
which directly face the sun. Depending on the absorptivity αn of each nth surface
element and the orientation of the satellite with respect to the Sun given by the
angle θ (see plot 3.12), the expression qn = αnP⊙ cos θ was used to determine the
heat flux imposed as a heat load condition on each of the elements. One can see
very well the cooler places, which experience less heat load with given shading. For
the illumination scenario a solar irradiance angle of θ = 45◦ was chosen.
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It is expected that the results of the solid GMM-based TRP calculations, as-
suming that all necessary technical information about the GALILEO satellites is
publicly available, may provide some sound headway towards a complete and closed
analysis of radiation pressure induced phenomena. Thus, anomalies such as the Y-
bias or the accurate emission characteristics of other satellite surfaces are expected
to be sufficiently described.

(a) TMM volumetric model. (b) Volume and surface mesh.

(c) Outgoing radiant heat flux from the sur-
face. (d) Satellite temperature distribution.
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APPENDIX A

Appendix

A.1 MCMH Algorithm

Here, we present the Metropolis-Hastings algorithm implementation as shown in
1. The MCMH algorithm belongs to a class of methods drawing random samples
from arbitrary probability distributions, which may not be directly tractable. For
detailed information, we refer the reader to Gelman et al. [43] p. 278 ff. During run-
time the algorithm moves through a potential sample space and iteratively traces
the true probability distribution. Throughout this process, new sample candidates
θn+1 are continuously drawn using a so-called proposal distribution, also known as
the transition kernel. It determines which jump the stochastic process will perform
next. Thereby, the choice of the next candidate θn+1 depends only on the value
of the current sample θn. Then, after each draw of a new sample candidate θn+1,
a decision is made whether to keep or discard it based on a special acceptance
criterion A.3 defined in the following pseudocode. It is precisely this random walk
property that typically characterizes a Markov chain, in that the future states of the
stochastic motion are determined entirely by the current state and do not depend
on past states.

1. Initialize sample candidate θn randomly

2. Pick a next sample candidate from a proposal distribution P (θn+1|θn)

3. Accept or reject the sample θn+1 depending on a uniform random variable
ϕ ∈ [0, 1]:

θn+1 =

{
θn+1 if ϕ ≤ a (θn+1|θn) (A.1)

θn else ϕ > a (θn+1|θn) (A.2)

a (θn+1|θn) = min

{
f(θn+1)P (θn|θn+1)

f(θn)P (θn+1|θn)
, 1

}
(A.3)

4. Increment counter n by 1: n + 1→ (n + 1) + 1
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Algorithm 1 MCMH algorithm

Input: Function f(θ) proportional to the posterior distribution
Output: Accepted θacc and rejected θrej samples from posterior sampling chain

Define proposal distribution P : P (θn+1|θn)
Initialize states of the Markov Chain θold = θP
Set total number of samples N

for n← 1, N do
θn+1 ← P (θn+1|θn)

a (θn+1, θn) = f(θn+1)P (θn|θn+1)
f(θn)P (θn+1|θn)

if a (θn+1, θn) > 1 then
θn = θn+1

θaccn ← θn+1

θrejn ← NaN
else
if a (θn+1, θn) ≥ ϕ then
θn = θn+1

θaccn ← θn+1

θrejn ← NaN
else
θaccn ← NaN
θrejn ← θn+1

end if
end if

end for
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A.2 MCMH results

The following plots illustrate the posterior statistics of each α data set listed in table
4.9. The computations have been carried out with the software PyMC3 [92], which
provides a probabilistic programming framework written in Python.

A.2.0.1 Posterior statistics α Set 1

(a) On the left picture, kernel density estimation plots of the sample mean and sample
variance distributions are shown. The probability is indicated on vertical axis, while from
the horizontal axis the respective value for µ or σ can be read. On the right picture, the
associated marginal posterior chains are illustrated.

(b) Kernel density estimation of the joint posterior distribution.

Figure A.1: The plots above visualize the Bayesian inference results for the posterior
obtained for α data set 1.
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A.2.0.2 Posterior statistics α Set 3

(a) On the left picture, kernel density estimation plots of the sample mean and sample
variance distributions are shown. The probability is indicated on vertical axis, while from
the horizontal axis the respective value for µ or σ can be read. On the right picture, the
associated marginal posterior chains are illustrated.

(b) Kernel density estimation of the joint posterior distribution.

Figure A.2: The plots above visualize the Bayesian inference results for the posterior
obtained for α data set 3.
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A.2.0.3 Posterior statistics α Set 5

(a) On the left picture, kernel density estimation plots of the sample mean and sample
variance distributions are shown. The probability is indicated on vertical axis, while from
the horizontal axis the respective value for µ or σ can be read. On the right picture, the
associated marginal posterior chains are illustrated.

(b) Kernel density estimation of the joint posterior distribution.

Figure A.3: The plots above visualize the Bayesian inference results for the posterior
obtained for α data set 5.

Chapter A 151



Test of General Relativity with GALILEO Satellites

152 Chapter A



List of Algorithms

1 MCMH algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

153



Test of General Relativity with GALILEO Satellites

154 Chapter A



List of Figures

1.1 Overview of LPI experiments by C. Will [126], [12] to determine the
violation factor α, which is the deviation from the predicted redshift
to be measured between two different clocks in a gravitational field
according to the given formula. . . . . . . . . . . . . . . . . . . . . . 5

2.1 Left, two GALILEO satellites attached to the dispenser unit mounted
onto the Soyuz ST-B/Fregat-MT upper stage, which was destined to
carry the satellites (E18 and E14) to their circular MEO orbit. The
right picture shows the satellite arrangement (E21, E25, E27, E31)
on the upper stage of the Ariane 5 ES. The first time, a quartet of
GALILEO satellites was launched by the Ariane 5 ES rocket was on
November, 17, 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Complete GALILEO constellation along its three orbital planes. The
picture was taken from the ESA homepage: https://www.esa.int/

ESA_Multimedia/Images/2014/07/Galileo_constellation. . . . . 15

2.3 Comparison of ground tracks of GALILEO satellites E14 (blue) and
E18 (red) recorded on November, 30th, 2015. . . . . . . . . . . . . . . 17

3.1 Sources of pseudo-range modeling errors. . . . . . . . . . . . . . . . . 28

3.2 Impact of the tropospheric correction on pseudo-range residuals GSAT0202 38

3.3 Full SORCE mission data plot . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Perturbation forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Comparison GALILEO IOV and FOC satellites . . . . . . . . . . . . 58

3.6 Attitude of the GALILEO satellites at different phases throughout the
orbit as viewed from the Sun. Beginning from the upper left picture
and following in clockwise direction, the pictures show the satellite’s
orientation with respect to the Sun for µ ∈ {0◦, 90◦, 180◦, 270◦}.
The definition of the coordinate system is in alignment with the IGS
convention (see 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Illustration of the exterior structure of a GALILEO satellite unit. . . 66

3.8 Orbit scene GALILEO satellite . . . . . . . . . . . . . . . . . . . . . 66

3.9 Artificial representation of the GALILEO satellite with all its payload
and subsystem components attached. . . . . . . . . . . . . . . . . . . 67

155

https://www.esa.int/ESA_Multimedia/Images/2014/07/Galileo_constellation
https://www.esa.int/ESA_Multimedia/Images/2014/07/Galileo_constellation


Test of General Relativity with GALILEO Satellites

3.10 Different modeling stages. Based on the real satellites geometry
(3.10a), a parametric GMM of the satellite’s body is created (3.10b).
Subsequently, this surface model is meshed (3.10c). Note that figure
3.10a shows the real satellite with the solar panels folded. . . . . . . . 69

3.11 Before the meshing process, it must be ensured that the surface nor-
mals face outwards. This serves as a criterion for the determination
of the correct lighting conditions. . . . . . . . . . . . . . . . . . . . . 70

3.12 GALILEO satellite FE model with self-shadowing profiles generated
for different illumination conditions. θ is the Sun elevation angle. . . 71

3.13 SRP modeling approach. . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.14 NAVANT and other +Z-face components. . . . . . . . . . . . . . . . 73

3.15 SARANT placed on +Z-face. . . . . . . . . . . . . . . . . . . . . . . 73

3.16 MLI-covered +X-face with thrusters and Sun sensors. . . . . . . . . . 73

3.17 View on the -X hemisphere of the GALILEO satellite. . . . . . . . . . 73

3.18 FEM pre-mesh optimization process using the example of the propul-
sion/X -panel modeling. . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.19 GALILEO satellite FE surface model of the body from several per-
spectives. Different optical material properties assigned to individual
parts of the satellite are illustrated by different colors (see table 3.3
for material property information). . . . . . . . . . . . . . . . . . . . 75

3.20 GALILEO satellite FE model with self-shadowing profile. The Sun
incidence angle is chosen as 70◦. The surface elements shown in yellow
are directly illuminated, blue are the elements that are not sunlit,
while red represents shaded areas. . . . . . . . . . . . . . . . . . . . . 76

3.21 Surface area convergence diagram. If the element division number
exceeds N > 3, the value describing the total illuminated area con-
verges, which is equivalent to saying that no better resolution of self-
shadowing is possible. The red lines limit the convergence radius
and the black line describes the average value of all determined val-
ues without the two outliers and also represents the center for the
convergence environment. . . . . . . . . . . . . . . . . . . . . . . . . 78

3.22 The right graph 3.22b shows the SRP acceleration as the vector 2-
norm |⃗asrp| with respect to spherical coordinates in the range 0 ≤ θ ≤
180 [deg] and 0 ≤ ϕ ≤ 360 [deg]. Picture 3.22a illustrates a simulated
scenario where the Sun direction (black arrow) forms an incidence
angle of θ = 70◦ with the Z-axis (red arrow). The coordinate system
is in alignment with the IGS frame as compared to 3.5. In the surface
plot 3.22b the float number indicates the value calculated as a result
of the illumination scenario. . . . . . . . . . . . . . . . . . . . . . . . 80

3.23 Parameter time series analysis for selected surface material parame-
ters in dependence of λ. . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.24 The right graph shows the initial SRP acceleration profile of the space-
craft’s body at BOL (compare figure 3.22b). The left side represents
the profile changes ∆a⃗srp after three and ten years relative to the
initial BOL distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.25 Distribution of IGS MGEX-related GNSS tracking stations whose
measurement data are included in the analysis. . . . . . . . . . . . . . 92

156 Chapter A



Test of General Relativity with GALILEO Satellites

3.26 Orbit residuals before the first adjustment step. As input to the orbit
model, we combined a five-parameter ECOM1 model with an a-priori
FE model introduced in section 3.3.3. . . . . . . . . . . . . . . . . . . 99

3.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.28 After one iteration, the Least-Squares adjustment could significantly
reduce the residuals pictured in 3.26. The resulting SRP parameter
estimates are presented in table 3.4. . . . . . . . . . . . . . . . . . . . 100

3.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.30 Comparison of relative orbit prediction performance based on differ-
ent SRP models with respect to precise orbit solutions for satellite
GSAT0202. The orbit propagation results visualized by the blue and
dark red lines are each calculated on the basis of purely empirical
SRP models, while the red curve reflects the performance of a semi-
empirical model based on a high-fidelity FE model. . . . . . . . . . . 101

3.31 Day-wise clock residuals. The plots show the distribution of clock
residuals over a one-day period. Each plot combines two different data
sets, each comprising fifty contiguous days of clock data estimation
results. Each data set is computed on the basis of different SRP models.103

4.1 Frequency stability of the PHMs used for the GALILEO satellites in
terms of the ADEV. The picture was taken from a presentation of P.
Rochat [89] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Different relativistic redshifts over one orbital revolution. Picture 4.2d
shows the radial distance of the satellite with respect to Earth’s center
over one day as well as its velocity. The function plots in the first
row show the gravitational (4.2a) as well as the 2nd order Doppler
shift (4.2b) corrections computed with the real SP3 orbit solutions
for satellite GSAT0202. Plot 4.2c demonstrates the total relativistic
time dilation according to 1.20. The colormap applied for the plots
4.2a and 4.2b indicates the amount of redshift to be corrected for.
Red labels higher redshift, blue labels lower redshift. . . . . . . . . . 108

4.3 Both Keplerian and J2 corrections for GPS week 1979 applied to the
clock solution of satellite GSAT0202. . . . . . . . . . . . . . . . . . . 111

4.4 Fast Fourier transformations of raw and differentiated clock data (4.4a
and 4.4b) after detrending and correction of systematic model errors.
It is evident that the 4th harmonic could be reduced significantly in
both clock data sets after the application of both Keplerian and J2
corrections. The fundamental frequency here is the Earth’s rotation
rate fday. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Comparison of detrended and corrected clock data before and after
application of differentiation. In 4.5a one observes random walk noise
predominating the clock residuals in the time domain whereas 4.5b
shows the same example data set subjected to white noise in the
frequency regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Chapter A 157



Test of General Relativity with GALILEO Satellites

4.6 Autocorrelation computed from a sample clock data set. The hori-
zontal axis scales the lag space. Since there is obviously significant
autocorrelation at lag 1, a first order autoregressive model (AR(1)) is
chosen to correct the data series, i.e. we presume each sample of the
time series to linearly depend on its previous value. . . . . . . . . . . 114

4.7 Results of daily violation parameter estimations for each clock data
set listed in table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 Evolution of the posterior probability distribution over 120 dice rolls.
The more often the experiment is done, the more precise becomes the
localization of the real probability parameter p. The blue curve shows
the posterior after the first trial with parameters a = 1 and b = 1, the
other curves give the distributions after {20, 40, 60, 80, 100, 120}
trials. A gradually increasing red color saturation level corresponds
to later trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.9 Comparison of results from the 12th generation IGRF model and the
THEMIS-A mission data. . . . . . . . . . . . . . . . . . . . . . . . . 124

4.10 Timing subsystem of the GALILEO satellites . . . . . . . . . . . . . 125

4.11 Honeycomb panel and MLI lay-up . . . . . . . . . . . . . . . . . . . . 127

4.12 Visualization of the different geometrical arrangements relevant for
the view factor computation. . . . . . . . . . . . . . . . . . . . . . . . 129

4.13 Schematic view on the spacecrafts timing system compartment. The
dimensions of the box are 0.7 × 1.2 × 1.1 [m3] (X × Y × Z). The
magenta colored surface is considered the antenna mounting panel
through which incoming radiation is exchanged with the enclosure.
Note that due to the special attitude of the spacecraft, the other cyan
colored surfaces do not receive heat from the outside. The green area
element features the separation panel to the neighboring spacecraft
compartment. The cylindrical shape within the box demonstrates the
location of the clock. Below this element, the clock’s mounting panel
is located, which is treated as the main heat sink of the enclosure. . . 131

4.14 Results of the thermal mathematical model. The curve with the
largest amplitude renders the MLI surface temperature profile. It
nearly reaches its equilibrium temperature after approximately 10h
and bottoms down to 70K before the next Sun illumination cycle starts.135

4.15 Results of the thermal mathematical model. 4.15a shows the temper-
ature profile of the payload and its neighboring nodes, while 4.15b
pictures the temperature profiles of the nodes representing the adja-
cent honeycomb layers. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.16 Orbit scene GALILEO satellite . . . . . . . . . . . . . . . . . . . . . 138

4.17 The plots show the density of SLR measurements over one GALILEO-
specific orbital period. The argument is given in seconds and the ver-
tical axis gives the SLR residual value in meters. The SLR residuals
measure the divergence between direct observations and orbit deter-
mination results. From the comparison of both plots one recognizes
how the SLR measurement coverage is distributed over the specific
satellite orbits. Due to the phasing of the satellites, which is approxi-
mately 180◦, in times where GSAT0202 can be tracked more frequent,
less GSAT0201 observations can be performed. . . . . . . . . . . . . . 139

158 Chapter A



Test of General Relativity with GALILEO Satellites

4.18 Marginalized posterior distributions for all clock data sets including
the combined posterior in the lower right corner. The B-field statistic
enters with a sampling variance of 0.8×10−5. The uncertainty relates
to the highest posterior density interval including 68% of the data and
is visualized by the dashed lines in the plots. . . . . . . . . . . . . . . 141

4.19 Revised marginalized posterior distributions for all clock data sets
including the combined posterior in the lower right corner. In contrast
to the results in figure 4.18, the B-field statistic enters with a sampling
variance of 1.5× 10−5 instead of 0.8× 10−5. The uncertainty relates
to the highest posterior density interval including 68% of the data
and is visualized by the dashed lines in the plots. . . . . . . . . . . . 142

A.1 The plots above visualize the Bayesian inference results for the pos-
terior obtained for α data set 1. . . . . . . . . . . . . . . . . . . . . . 149

A.2 The plots above visualize the Bayesian inference results for the pos-
terior obtained for α data set 3. . . . . . . . . . . . . . . . . . . . . . 150

A.3 The plots above visualize the Bayesian inference results for the pos-
terior obtained for α data set 5. . . . . . . . . . . . . . . . . . . . . . 151

Chapter A 159



Test of General Relativity with GALILEO Satellites

160 Chapter A



List of Tables

2.1 GALILEO satellite signal plan. . . . . . . . . . . . . . . . . . . . . . 20

3.1 Perturbations as measured for GALILEO satellite GSAT0202. Orbit
errors reflect results after a simulation duration that corresponds to
one orbital revolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Satellite attitude phases throughout an orbital revolution. . . . . . . 64
3.3 Table of optical material parameters including the emission coeffi-

cients ϵ of any materials assigned to the FEM. For better identifi-
cation purposes, the different material domains of the FEM in figure
3.19 have color indications which can be cross-referenced with the
information in this table . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Parameter estimation results comparing the model performance two
different a-priori SRP models. . . . . . . . . . . . . . . . . . . . . . . 101

4.1 Satellite clock operation periods. . . . . . . . . . . . . . . . . . . . . 106
4.2 Keplerian elements of GSAT0202 and GSAT0201. . . . . . . . . . . . 107
4.3 Relativistic redshift due to other third body potentials. . . . . . . . . 110
4.4 Reported anomalies concurrent to the operations of PHM-A unit of

GSAT0201. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 Final statistical results for the estimated α parameters of all consid-

ered clock data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6 Configuration factors computed for the simplified three-element en-

closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.7 Material parameters used for the thermal analysis. . . . . . . . . . . . 134
4.8 Satellite laser ranging statistics. . . . . . . . . . . . . . . . . . . . . . 139
4.9 α posterior statistics (statistical sample mean and uncertainties). . . . 140

161



Test of General Relativity with GALILEO Satellites

162 Chapter A



Bibliography

[1] Benjamin P Abbott, Richard Abbott, TD Abbott, MR Abernathy, Fausto Ac-
ernese, Kendall Ackley, Carl Adams, Thomas Adams, Paolo Addesso, RX Ad-
hikari, et al. Observation of gravitational waves from a binary black hole
merger. Physical review letters, 116(6):061102, 2016.

[2] DN Aguilera, Holger Ahlers, Baptiste Battelier, Ahmad Bawamia, Andrea
Bertoldi, R Bondarescu, Kai Bongs, Philippe Bouyer, Claus Braxmaier, Luigi
Cacciapuoti, et al. Ste-quest—test of the universality of free fall using cold
atom interferometry. Classical and Quantum Gravity, 31(11):115010, 2014.

[3] Airbus Defence and Space. Clock Monitoring and Control Unit - Technical
Specification, 2014.

[4] Kazunori Akiyama, Antxon Alberdi, Walter Alef, Juan Carlos Algaba, Richard
Anantua, Keiichi Asada, Rebecca Azulay, Uwe Bach, Anne-Kathrin Baczko,
David Ball, et al. First sagittarius a* event horizon telescope results. i. the
shadow of the supermassive black hole in the center of the milky way. The
Astrophysical Journal Letters, 930(2):L12, 2022.

[5] Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azu-
lay, Anne-Kathrin Baczko, David Ball, Mislav Baloković, John Barrett, Dan
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